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Abstract. We improve the result of our previous paper on translation
invariant quadratic forms in two special cases. We reduce the density
bound |A|/N = O((log logN)−c) to |A|/N = O((logN)−c) for most
quadratic forms and handle almost diagonal equations in s ≥ 6 variables
instead of s ≥ 8.

1. Introduction

This paper complements the author’s work [3] on translation invariant
quadratic forms and should be read subsequent to it. In [3] we have proven
the following result.

Theorem 1.1. Let Q ∈ Zs×s be symmetric with Q · 1 = 0 and off-rank r.
Assume that xTQx = 0 has a non-singular real solution and assume that
s ≥ 5 + 3r for 1 ≤ r ≤ 4 and s ≥ 10 for r ≥ 5. If there are only
trivial solutions, when the variables are restricted to A ⊂ {1, 2, . . . , N},
then |A| ≤ CQN(log logN)−c for some c, CQ > 0 and c independent of Q.

The condition Q · 1 = 0 is equivalent to translation invariance of the
equation xTQx = 0 as explained in [3]. The ‘off-rank’ of a matrix is defined
in Section 2.

The aim of this note is to give improvements on this theorem in two
natural special cases. On the one hand, we can improve the bound |A| ≤
CQN(log logN)−c to |A| ≤ CQN(logN)−c in the case r ≥ 5 (which covers
almost all quadratic forms) and on the other hand, solve the problem with
as few as s ≥ 6 variables in the almost diagonal situation r = 1. In the end,
we want to discuss how the two approaches might be useful to improve on
Theorem 1.1 for all quadratic forms.

The next section is devoted to explain the results, which are given in
Theorem 2.2 and Theorem 2.4.

We introduce some standard notation. We use the Vinogradov notation
� and O-notation throughout the paper and indicate dependencies on pa-
rameters by subscripts, like in OP,ε(N). The asymptotic parameter N ∈ N
should be thought of as large and we work most of the time on the interval
[1, N ] = {1, 2, . . . , N}. We write T = R/Z for the ‘circle’ and identify it
with [0, 1] whenever convenient. As usual we abbreviate e(x) = exp(2πix).
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For a set A ⊂ [1, N ] with the indicator function 1A and density δ =
|A|/N we define the ‘balanced function’ by

f(n) = 1A(n)− δ.(1.1)

We are using bold face to denote vectors and the notation x ≤ N means
that each coordinate is bounded by N .
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2. Statement of Results

First we summarize some of the definitions from [3] that are needed for
the proofs below.

A quadratic form Q(x) = xTQx is translation invariant if Q(x + 1) =
Q(x) for all x ∈ Zs. For a corresponding symmetric matrix Q ∈ Zs×s, this
translates into the condition Q · 1 = 0.

Definition 2.1 (Off-diagonal rank). For a symmetric matrix Q ∈ Rs×s we
consider the set of matrices M such that M = P TQP for a permutation
matrix P . Such a matrix can be (non-uniquely) written as

M =

(
A B
BT C

)
for some matrices A,B and C. The off-rank r of Q is defined as

r = max rank(B),

where the maximum is taken over all choices of P and decompositions of
M . In other words, r is the maximal rank of a submatrix in Q, that doesn’t
contain any diagonal elements.

Now we can state the first theorem.

Theorem 2.2. Let Q ∈ Zs×s be symmetric with Q·1 = 0 and off-rank r ≥ 5
(this implies that s ≥ 10). Assume that it has a non-singular real solution
to xTQx = 0, but only trivial solutions when the variables are restricted to
A ⊂ [1, N ]. Then |A| ≤ CQN(logN)−c for some c, CQ > 0.

The main idea for the proof can be summarized as follows. The usual
density increment procedure depends on the fact that e(αp(x)) for a polyno-
mial p is constant on long arithmetic progressions. If α is close to a rational
number with small denominator (on the ‘major arcs’), the length of those
progressions is comparable to N and we get a much better bound. It turns
out that we can control the contribution of the ‘minor arcs’ (complement of
the major arcs) in the proof of Theorem 2.2 in a uniform way independent
of the structure of A. This is done in Section 3. In Section 4 we perform
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the density increment with α in the major arcs.

To motivate the second part of the paper, consider quadratic forms de-
fined by the following matrices.

Example 2.3. Consider the matrices
3 1 0 0 0
1 7 −2 −3 2
0 −2 5 0 0
0 −3 0 1 0
0 2 0 0 −4

 and


0 2 2 2 1
2 −1 4 4 2
2 4 6 4 2
2 4 4 −5 2
1 2 2 2 3

 .

The first example is ‘almost diagonal’ in the sense that off-diagonal terms
are all concentrated in the second column/row. In what sense is the second
example almost diagonal? We can write the second matrix as a sum of a
diagonal matrix D and a rank one perturbation R, a matrix of the form
R = v · vT for the vector v = (1, 2, 2, 2, 1)T . While the first matrix is
an example of a small ‘local’ perturbation, the second is an instance of a
diagonal matrix with a small ‘global’ perturbation.

One can easily check that the two matrices have off-rank one. As we
will see in Section 5, it turns out that those two cases exhaust the possible
ways that a symmetric matrix can have off-rank one. Armed with this
classification, we can show that Theorem 1.1 holds for s ≥ 6 (instead of
s ≥ 5 + 3r = 8) if the matrix underlying our quadratic form has off-rank
one. The result is given in the following theorem.

Theorem 2.4. Let Q ∈ Zs×s be symmetric with Q · 1 = 0 and off-rank
r = 1. Assume that s ≥ 6, and that there is a non-singular real solution
to xTQx = 0. If there are only trivial solutions when the variables are
restricted to A ⊂ [1, N ], then |A| �Q N(log logN)−1/15.

Let us analyse the two cases in more detail. What does it mean that in
the first example all off-diagonal terms are concentrated in the row/column
of one variable? Let us assume for simplicity that the variable is xs. We
will see that by completing squares, we can remove all off-diagonal terms
and replace each variable xi by xi − xs (translation invariance!), reducing
the problem to a diagonal form in five variables, which is well within reach
of the classical approach. We deal with this case in Section 6.

In Section 7 we reduce the second case to the following diagonal system
considered by Smith [5] and the author [2].

d1x
2
1 + d2x

2
2 + . . .+ dsx

2
s = 0,

d1x1 + d2x2 + . . .+ dsxs = 0.
(2.1)

The system (2.1) can be handled under the following conditions.

Conditions for system (2.1).
(i) d1 + d2 + . . .+ ds = 0,
(ii) s ≥ 7 and di 6= 0 for all 1 ≤ i ≤ s,
(iii) there are at least two positive and at least two negative coefficients di.
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Condition (i) encodes the translation invariance of the system. The
bound s ≥ 7 in condition (ii) will correspond to the condition s ≥ 6 in
Theorem 2.4. We assume that di 6= 0 since we can easily locate non-trivial
solutions otherwise. Condition (iii) is needed for the existence of a non-
singular real solution (see [2] for details).

In Section 7 we use the following theorem from [2] to deduce Theorem
2.4 in the second case.

Theorem 2.5. Assume that the conditions above hold and system (2.1) has
only trivial solutions for xi ∈ A ⊂ [1, N ]. Then |A| ≤ CN(log logN)−1/15

for some constant C, which depends only on the coefficients di of the system.

3. Controlling the minor arcs

As in [3], the main ingredient in the proof is a bilinear sum estimate for
our exponential sum

Sg(α) =
∑
x≤N

g(x)e(αQ(x)).

Write α = a/q + β for a diophantine approximation with q ≤ N, |β| ≤
(qN)−1 and

K(α) =
(
N log q + min

{N2

q
,
| log(|β|N2)|+ 1

|β|q

})1/2
.(3.1)

Then we can bound Sg(α) as in [3] for |g| ≤ 1 by

|Sg(α)| � N s−rK(α)r.

As in [3, Theorem 3], we can refine the estimate if we are given L1-bounds∑
n≤N |g(n)| = O(δN). As in [3], we get the bound

|Sg(α)| � δs−10N s−5K(α)5.(3.2)

This pointwise bound allows us to deduce a sharp Lp-estimate for Sg(α),
which is necessary for the density increment strategy to work.

If we look at the proof of this Lp bound in [3], we see that the condition
we need for the exponent of K(α) is that it is bigger than four. This means
that we can pull out a small power of K(α), and improve the estimate on
the minor arcs, where K(α) is small.

For an absolute constant D > 1 to be chosen later, define the major arcs
for q ≤ D4δ−40 and (a; q) = 1 by

M(q, a) = {α ∈ T : ‖α− a/q‖ ≤ D8δ−80N−2}(3.3)

(disjoint for N ≥ D8δ−80) and set M to be the union of all those sets. The
minor arcs m = T\M is the complement. The key point to notice is that the
constants in the definition of M only depend on δ and an absolute constant
D. The precise numbers are less important.

By Dirichlet’s approximation theorem, we have that every α ∈ T is
contained in at least one ball defined by ‖α − a/q‖ ≤ (qN)−1 for some
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q ≤ N . This means that we have two types of minor arcs. Those Dirich-
let neighbourhoods with q > D4δ−40 and those with q ≤ D4δ−40 but
D8δ−80N−2 < ‖α− a/q‖ ≤ (qN)−1.

If q > D4δ−40, we have

K(α)� (N log q)1/2 +
N

q1/2
� D−2δ20N.

for N � D8δ−80.
In the second case q ≤ D4δ−40, we split the two intervals D8(N2δ80)−1 <

|β| ≤ (qN)−1 into dyadic bits |β| ∈ (2iN−2, 2i+1N−2] for log2(δ
−80D8) ≤

i ≤ log2(Nq
−1). For fixed i we have

K(α)� (N log q)1/2 +
(
N2 i+ 1

q2i

)1/2
� (N log q)1/2 +N2−i/4 � D−2δ20N

for N � D8δ−80.
Now that we have good pointwise bounds, we cite [3, Lemma 2], which

gives us a control of K(α) on average. For p > 4 we have∫ 1

0

|K(α)|p dα� Np−2.

We apply the two bounds with (3.2) and get∫
m

|Sg(α)| dα�(δs−10N s−5) sup
α∈m
|K(α)|1/2

∫
m

|K(α)|9/2 dα

�(δs−10N s−5)(D−1δ10N1/2)N5/2 � D−1δsN s−2.

We can use this bound in the argument in [3, Section 3]. We know that∫ 1

0

|Sg(α)| dα� δsN s−2

for g(x) = 1As(x)− δs with δ = |A|/N as long as N �Q δ
−2. By choosing

D sufficiently small, this implies that∫
M

|Sg(α)| dα� δsN s−2.

By the same argument as in [3, Section 3] we get the bound

sup
α∈M
|Sfi(α)| � δs+80N s(3.4)

for a function fi that is a (tensor) product of functions f, δ and 1A (see
(1.1)).

4. Density increment on major arcs

Consider the density increment argument from [3, Section 7]. Instead of
a general lower bound for the exponential sum, we have (3.4), where α lies
in the major arcs M defined in (3.3). This implies that there is a q ≤ D4δ−40
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and 1 ≤ a ≤ q such that ‖α − a/q‖ ≤ D8δ−80N−2. For the following argu-
ment, D is a fixed constant and will be absorbed in the Vinogradov notation.

We decompose our interval [1, N ] into progressions modulo q. On each
progression we have e(αQ(x)) = e(βQ(x))e(aQ(x)/q), where α = a/q + β.
Since β is very small, we can estimate

|e(βQ(x))− e(βQ(y))| ≤ 2π|β||Q(x)−Q(y)| � (N2δ80)−1|Q(x)−Q(y)|.

The second factor is constant on progressions with difference q. If we write
x = qm + h and y = qn + h, we obtain

|e(αQ(x))− e(αQ(y))| = |e(βQ(x))e(aQ(h)/q)− e(βQ(y))e(aQ(h)/q)|
=|e(βQ(x))− e(βQ(y))| � (N2δ80)−1|Q(x)−Q(y)|
�(N2δ80)−1q2N‖m− n‖∞ � N−1δ−160‖m− n‖∞.

If we cut our q-progressions Ph into subprogressions Ph,j of side length
approximately P = ηδ240N for some small fixed η, our function e(αQ(x))
is constant up to a small error term of size O(δ80). This implies∑

x≤N

fi(x)e(αQ(x)) =
∑
h≤q

∑
j≤(qηδ240)−1

∑
x∈Ph,j

fi(x)e(αQ(x))

=
∑
h≤q

∑
j≤(qηδ240)−1

∑
x∈Ph,j

fi(x)(c(α,h, j) + ε(α,x)δ80)

for some functions |c(α,h, j)| ≤ 1 and |ε(α,x)| < 1/2. Taking absolute
values and using 3.4 with

∑
x |fi(x)| � δsN s gives∑

h≤q

∑
j≤(qηδ240)−1

∣∣∣ ∑
x∈Ph,j

fi(x)
∣∣∣� δs+80N s.

For at least one value of h and j, we get∣∣∣ ∑
x∈Ph,j

fi(x)
∣∣∣� δ240s+s+80N s.

Since fi is a product of f, 1A and δ the sum on the left hand side splits
into s independent sums. We estimate all factors trivially apart from one of
those that contain the balanced function f (which exists by construction of
fi). Write Ph,j = h + qPj with Pj = Pj1 × . . .× Pjs , then we have for some
k ≤ s the inequality

(δP )s−1
∣∣∣ ∑
xk∈hk+qPjk

f(xk)
∣∣∣� δ240s+s+80N s � δs+80|Pjk |s.

This implies a density increment of size δ → δ + θδ81 for a small θ > 0
and a loss of progression length of N → ηδ240N . Now we perform a density
increment argument, the details of which can be found in [3, Section 7].

The number of steps of this iteration is bounded by θ−1δ−81 and we end
up with the condition (ηδ240)θ

−1δ−81
N � CQD

8δ−80 for some constant CQ,
which depends on the smallest non-trivial solution of Q in Z (for a discussion
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of this, see [3, Section 2]). Taking logarithms and rearranging for δ gives us
δ � (logN)−1/82, for example.

5. Structure of Quadratic Forms with Off-rank One

Now we turn our attention towards the second topic of this paper, the
off-rank one situation. Given a symmetric matrix with off-rank one, what
can we say about its structure? The following lemma provides a complete
answer to this question. Write v ⊗w := v ·wT for v,w ∈ Rd.

Lemma 5.1. Let Q ∈ Zs×s be a symmetric matrix with off-rank r = 1.
Then either

(i) Q = D + v ⊗ ej + ej ⊗ v, where v ∈ Zs, ej is the standard basis
vector for some 1 ≤ j ≤ s and D ∈ Zs×s is diagonal, or

(ii) Q = m−1(D+v⊗v) with a diagonal quadric D ∈ Zs×s, some vector
v ∈ Zs and m ∈ Z\{0}.

Proof. By permutating variables, if necessary, we can assume that Q has
the form

Q =

g u aT

u h bT

a b C


for some matrix C ∈ Z(s−2)×(s−2) and u 6= 0. Now consider for some i 6= j
the off-diagonal submatrix (

u aj
bi cij

)
.

For this to have rank at most one, we must have ucij = ajbi. If a = 0 or
b = 0 this implies that cij = 0 for all i 6= j, which corresponds to case (i).
Otherwise, we can assume that a 6= 0 and b 6= 0. Again by the off-rank
property we deduce that the vectors a and b are linearly dependent and we
have b = λa for some λ ∈ Q\{0}. By using ucij = ajbi we deduce that
C = u−1b ⊗ a + E for some diagonal matrix E. It remains to ‘lift’ this
information to the matrix Q.

If we consider the structure of Q modulo diagonal matrices, we have to
show that one can choose diagonal entries x and y in such a way that the
matrix

P =

x u aT

u y λaT

a λa u−1λa⊗ a

 ,

has the form m−1v ⊗ v for some m ∈ Z\{0} and v ∈ Zs. There isn’t any
choice but to complete P touλ−1 u aT

u λu λaT

a λa u−1λa⊗ a


and check that this matrix has indeed rank one. To be able to write this
as a tensor product of a vector v with itself, we multiply with the common
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factor m = k2λu. A suitable k ∈ N makes all entries to integers and allows
us to choose vT = k (u, λu, λaT ). �

6. The Parameter Method

In this section we are going to analyse case (i) in Lemma 5.1. By chang-
ing notation, we can assume that the ‘non-diagonal’ variable is xs and by
completing the square we can write the quadratic equation Q(x) = 0 in the
form

a1(b1x1 − c1xs)2 + . . .+ as−1(bs−1xs−1 − cs−1xs)2 + asx
2
s = 0

for some ai, bi, ci ∈ Z. We can assume that bi 6= 0 for all 1 ≤ i ≤ s− 1.
Now we can simplify this equation by incorporating the restriction of

translation invariance. If we replace each xi by xi + 1 we obtain the same
quadratic form with an additional linear term, which is two times

a1(b1x1 − c1xs)(b1 − c1) + . . .+ as−1(bs−1xs−1 − cs−1xs)(bs−1 − cs−1) + asxs,

as well as the constant term

a1(b1 − c1)2 + . . .+ as−1(bs − cs)2 + as.

The linear term must be zero for all x, which implies that bi = ci for all
i with ai 6= 0. Where ai = 0 we can simply assume that bi = ci without
changing the quadratic form. Furthermore this implies that as = 0. These
conditions are sufficient for the vanishing of the constant term as well.

If we set di = aib
2
i we end up with the almost diagonal form

d1(x1 − xs)2 + . . .+ ds−1(xs−1 − xs)2 = 0.(6.1)

If di = 0 for some i, we can easily find a non-trivial solution in A. Therefore,
we can assume that all di 6= 0.

We view xs as a free ‘parameter’ ranging over the set A and focus on
the remaining s− 1 variables. We define the shifted exponential sum by

UA−y(α) =
∑
x∈A

e(α(x− y)2).(6.2)

The number of solutions to (6.1) can be written as the Fourier integral∑
xs∈A

∫ 1

0

s−1∏
i=1

UA−xs(diα) dα.

We compare this to the situation, where x1, . . . , xs−1 ∈ [1, N ]. The number
of solutions in this case is given by∑

xs∈A

∫ 1

0

s−1∏
i=1

U[1,N ]−xs(diα) dα.

The inner integral is bounded from below by∫ 1

0

s−1∏
i=1

U[1,N/2](diα) dα(6.3)
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since the set [1, N ]−xs covers either [1, N/2] or [−N/2,−1] completely and
equation (6.1) has even degree.

As long as s−1 ≥ 5 and not all di have the same sign, the classical circle
method gives us many integer solutions for a diagonal quadratic equation.
(See the book of Davenport [1], for example.) The case, where all di have
the same sign is excluded by the assumption that the quadric has a non-
singular real solution. This implies a lower bound of size N s−3 for (6.3) and
we obtain ∑

xs∈A

∫ 1

0

s−1∏
i=1

U[1,N ]−xs(diα) dα� δN ·N s−3.

Since there are only δN trivial solutions of (6.1) in A by assumption, we
get ∑

xs∈A

∫ 1

0

∣∣∣ s−1∏
i=1

UA−xs(diα)−
s−1∏
i=1

δU[1,N ]−xs(diα)
∣∣∣ dα� δsN s−2 − δN.(6.4)

To deduce a correlation estimate, we replace the indicator function 1A in
(6.2) by 1A = δ1[1,N ] + f with the balanced function f from (1.1). An
expansion of the first product in (6.4) creates 2s−1 terms, where the first
one is cancelled by the second product. The remaining contributions can
be bounded from above by a finite sum of terms of the form∑

xs∈A

∫ 1

0

s−1∏
i=1

|UT (xs)gi(diα)| dα

with (Tyg)(x) = g(x− y) and at least one of the gi equal to f . By Hölder’s
inequality, we can bound this expression by

sup
xs,α
|UTxsf (α)|1/2

∑
xs∈A

∫ 1

0

|Ug(α)|s−3/2 dα

for some function |g| ≤ 1 defined on [−N,N ] with
∑
|n|≤N |g(n)| ≤ 2δN .

This implies |Ug(α)| ≤ 2δN and the upper bound

(2δN)s−6 sup
xs,α
|UTxsf (α)|1/2

∑
xs∈A

∫ 1

0

|Ug(α)|9/2 dα.

We get the bound O(N5/2) for the integral from [3, Theorem 6]. This leads
to the estimate

(δN)s−5 sup
xs,α
|UTxsf (α)|1/2N5/2 � δsN s−2 − δN.

As long as N �Q δ
−2 we obtain the correlation estimate∣∣∣∑

x

f(x)e(α(x− xs)2)
∣∣∣� δ10N

for some xs ∈ [1, N ] and α ∈ T. By expanding the square, one can see that
the left hand side is just a quadratic exponential sum. The density increment
procedure in [3, Section 7] gives us the bound δ � (log logN)−1/11.
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7. The Diagonal System

We are given a translation invariant quadratic form xTQx = 0 in s ≥ 6
variables with off-rank one, which satisfies case (ii) in Lemma 5.1.

We can write the equation Q(x) = 0 in the form

d1x
2
1 + . . .+ dsx

2
s + (v1x1 + . . .+ vsxs)

2 = 0,(7.1)

where the coefficients di are equal to the diagonal elements in the matrix D
from Lemma 5.1. Consider Q(x + 1) = Q(x) + 2L(x) + Q(1), where L(x)
is given by

d1x1 + . . .+ dsxs + (v1x1 + . . .+ vsxs)(v1 + . . .+ vs)

and the constant term Q(1) is

(d1 + . . .+ ds) + (v1 + . . .+ vs)
2.

By translation invariance, the linear and constant terms have to disappear
for all x ∈ Z. This can only happen if for n = v1+. . .+vs we have di = −nvi
and d1 + . . .+ds = −n2. In the special case n = 0 we end up with the linear
equation

v1x1 + . . .+ vsxs = 0,

which is covered by the method of Roth [4] and gives a better bound than
needed for our theorem here. We assume from now on that n 6= 0 and
write equation (7.1) in the form of a system. For a new variable h =
v1x1 + . . . + vsxs with h ∈ Z we obtain (after multiplication of the linear
equation by n)

d1x
2
1 + . . .+ dsx

2
s + h2 = 0,

d1x1 + . . .+ dsxs + nh = 0,
(7.2)

with the condition d1 + . . . + ds = −n2. Now we (arbitrarily) restrict h to
nZ, write h = nx0 and d0 = n2. Then system (7.2) reduces further into

d0x
2
0 + d1x

2
1 + . . .+ dsx

2
s = 0,

d0x0 + d1x1 + . . .+ dsxs = 0,

with d0 + d1 + . . .+ ds = 0.
Now Theorem 2.5 implies the result for the weaker system (7.2). One

should note at this point that conditions (ii) and (iii) for Theorem 2.5 are
implied by the assumptions in Theorem 2.4 or can be assumed to be true
without loss of generality.

8. Remarks and Open Problems

Looking at the cases r = 1 and r = 5, where we can deal with equations
in 5 + r variables, one might have a vague hope to be able to extend this
result to off-ranks 2 ≤ r ≤ 4. If this were the case, Theorem 1.1 would
require only s ≥ 10 variables instead of s ≥ 17. (Recent work of Zhao [6]
could probably reduce the bound even further to s ≥ 9.)
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To prove such a result, we need a structure theorem along the lines of
Lemma 5.1 for quadratic forms with off-rank 2 ≤ r ≤ 4. Let us look at the
next simplest case r = 2.

When r = 1 we have two cases. Slightly simplified, they correspond to
the decompositions M = D + v ⊗ v and M = D + es ⊗ v + v ⊗ es for a
diagonal matrix D. Combining the two ideas, we end up with three different
structures for r = 2:

(i) Q = D + v ⊗ v + w ⊗w,
(ii) Q = D + v ⊗ v + es ⊗w + w ⊗ es,
(iii) Q = D + es−1 ⊗ v + v ⊗ es−1 + es ⊗w + w ⊗ es.

It is easy to check, that in all three cases we have indeed a matrix with
off-rank at most two. Sadly this näıve idea doesn’t work and they don’t
cover all possible cases of matrices with off-rank r = 2. Consider the matrix

∗ 1 1 0 1
1 ∗ 0 1 1
1 0 ∗ 1 0
0 1 1 ∗ −1
1 1 0 −1 ∗

 ,

where stars mark arbitrary entries.
For it to be of type (i), we would need to find diagonal entries such that

the resulting matrix has rank two. By choosing suitable 3×3 matrices with
only one entry missing, we can fill in the diagonal entries easily and check
that this cannot be done consistently.

It is also easy to see that option (iii) is not correct since there are non-
zero entries in more than two rows. For option (ii), we have to show that
any 4 × 4 submatrix, which results by deleting a row and corresponding
column cannot be completed to have rank one. This follows directly from
the existence of off-diagonal 2×2 matrices of full rank in each of those cases.

It is an interesting problem, whether this a is pathological counterex-
ample that can be understood by adding a case (iv) to the above list or
whether symmetric off-rank two matrices don’t have a simple classification.

Even though a complete classification seems a non-trivial task, it is likely,
that the ideas of this paper can be used to improve slightly on the variable
bounds for r ∈ {2, 3, 4} and, therefore, potentially reduce the overall bound
of Theorem 1.1 from s ≥ 17 to s ≥ 16, for example.

Concerning the density bounds, it isn’t hard to see that the proof given
for Theorem 2.2 does generalize to any situation in [3], where we use the
function K(α) from (3.1) to bound the Lp-norm of our exponential sum.
This would take care of almost all quadratic forms with off-rank 1 ≤ r ≤ 4
as well. The only cases, where this is not possible correspond to Section 8
in [3], where we reduce the problem to a linear system in four equations.
Further advances in the linear theory could provide bounds of the form
(logN)−c for all quadratic forms in sufficiently many variables.
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