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Abstract. We show that the number of integer solutions for a pair of
bilinear equations in at least 2× 6 variables has (up to logarithms) the
expected upper bound unless there is a structural reason why it is not
the case.

1. Introduction

In the by now classical work, Birch [1] provides a method to show that
a system of forms of degree d has the expected number of solutions as long
as the number of variables is big enough compared to the dimension of the
‘singular locus’. If we have a system of R forms in n variables and V ∗ is the
‘singular locus’, then the condition is

n− dim[V ∗] > R(R + 1)(d− 1)2d−1.

In this paper we want to consider the case of two bilinear forms in 2s
variables. The condition in this case would be 2s − dim[V ∗] > 12. It can
probably be improved by recent work of Schindler [3] on Birch’s theorem
for bihomogeneous forms.

From a näıve point of view, it seems very strange that the method should
give weaker results if we find ourselves in more structured situations with a
large singular locus, like the case of two diagonal forms, where the singular
locus is at least as big as s. On the other hand, the standard circle method
approach is well suited to answer the diagonal problem in as few as 2 × 4
variables.

The question we are trying to answer is: Can we prove a result for ‘all’
bilinear forms, independent of the size of the singular locus? We show that
this is indeed the case if we restrict our attention to upper bounds instead
of asymptotic formulas.

Theorem 1.1. Let N ≥ 2 and B1, B2 ∈ Zs×s be two integer matrices
with B1(x,y) = xTB1y, B2(x,y) = xTB2y corresponding bilinear forms,
then the number of solutions to the system B1(x,y) = B2(x,y) = 0 with
|xi| ≤ N, |yi| ≤ N is of order O(N2s−4(logN)2) as long as we are not in
one of the two situations

(1) rank(λB1 + µB2) ≤ 5 for all λ, µ ∈ Z or
(2) rank(λB1 + µB2) ≤ 1 for some (λ, µ) 6= (0, 0).
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Remark 1.2. The number of solutions is bounded from below by cN2s−4 for
some c > 0 by an averaging argument. See also Lemma 2.5 below.

The first exceptional case in Theorem 1.1 does not give a sharp theoret-
ical bound, but reflects a limitation in our methods. We would expect that
the same result holds with a three replacing the five (which would be best
possible).

The second roughly corresponds to one of the equations being of the
form xy = 0, which cannot ‘save’ two variables, as required in the theorem
(see also Lemma 2.5). In this case our result is best possible.

Rank conditions as those that appear in our theorem are typical in this
line of work as can be seen in previous work of Schmidt [4] and Dietmann
[2], who deal with systems of general quadratic forms.

Most of the following arguments will extend to general systems of bilin-
ear forms, but we feel that the methods and ideas are best presented in the
simplest case of two equations.

Acknowledgements:
We would like to thank the mathematical institute at the University of
Oxford for providing good working conditions. The author was supported
by the EPSRC grant EP/J009458/1.

2. Collecting the Tools

Before we begin with stating the main lemmata of this work, we need a
few notational conventions.

As usual, we use O-notation and the Vinogradov notation f � g to
denote that |f | ≤ C|g| for some C > 0. In the same way, we say that
the number of solutions S(N) is essentially bounded by a quantity T (N), if
there is a C > 0 such that S(N) ≤ T (CN) is a bound for all N ∈ N.

Now we want to state the tools that we are going to use excessively
throughout the paper. Most of them are simple results from linear algebra.

Lemma 2.1 (Homogenisation). Let A ∈ Zs×s, c ∈ Zs and yi ∈ Z, |yi| ≤ N .

(i) Let Ay = c be a system of inhomogeneous linear equations. Then
the number of solutions to this equation is essentially bounded by the
number of solutions to the homogeneous system Ay = 0.

(ii) Let Ay = 0 be a system of linear equations. Then the number of so-
lutions to this equation is essentially bounded by N times the number
of solutions to the same system with yj = 0 for some 1 ≤ j ≤ s.

(iii) If the last d entries of Ay don’t depend on the variables y1, . . . , yj,
then we can set the variables yj+1, . . . , ys equal to zero in the first
r − d equations of Ay = 0 and obtain an essential upper bound for
the number of solutions. In other words: If A is a upper triangular
block matrix, we can change it into a diagonal block matrix.

Remark 2.2. A bilinear system xTBiy = 0 can always be thought of as a
linear system in y by fixing the variables x (or the other way around).
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Proof. For the first statement, we observe that for a given fixed solution
Az = c and any other solution Ay = c to the inhomogeneous linear equa-
tion, we obtain a solution A(y − z) = 0 with ‖y − z‖∞ ≤ 2N .

For the second statement, we observe that by fixing yj, we can rewrite
Ay = 0 into By′ = cj, where B is essentially A but with missing column j
and cj is −yj times the jth column of A. The result follows from part one
and the observation, that there are O(N) choices for yj.

The third statement is slightly more difficult. For any choice of values for
y′′ = (yj+1, . . . , ys) that satisfy the last d equations of Ay = 0, we can set
y′ = (y1, . . . , yj) and write the first r−d equations in the form By′ = c(y′′),
where B is the upper left submatrix of size (r − d) × j. By part (i), this
system is majorized by the system By′ = 0. This homogenisation procedure
doesn’t affect the last d equations since they are independent of y′. �

Lemma 2.3 (Divisor estimates). An equation of the form dx1y1 = cx2y2
with c, d 6= 0 has O(N2 logN) solutions with |xi|, |yi| ≤ N .

Proof. A Cauchy-Schwarz symmetrisation (see proof of Lemma 2.6 below)
reduces the problem to the form x1y1 = x2y2. For x1 = 0, the number
of solutions is O(N2). We can therefore assume that x1 and x2 are non-
zero and positive. If we consider this to be a linear equation in y1 and y2
and set d = gcd(x1, x2), then we can instead look at u1y1 = u2y2, where
gcd(u1, u2) = 1 and ui = xi/d. This forces the divisibility conditions u1|y2
and u2|y1. Therefore, the number of solutions to this linear diophantine
equation is bounded by (2N+1)/max(u1, u2). We obtain an essential upper
bound of the form

N
∑

1≤x1,x2≤N

gcd(x1, x2)

max(x1, x2)
.

Collecting the terms with equal greatest common divisor, we obtain

N
∑
d≤N

∑
1≤u1,u2≤N/d

1

max(u1, u2)
≤ 2N

∑
d≤N

∑
1≤u1≤u2≤N/d

1

u2

=2N
∑
d≤N

∑
1≤u2≤N/d

1 = 2N
∑
d≤N

N

d
� N2 logN.

�

The next lemma isn’t strictly necessary for the argument, but simplifies
the exposition.

Lemma 2.4 (Coordinate change). If we set u = Kx for a matrix K ∈ Zs×s
of full rank, then the resulting system uK−1By = 0 has a bigger upper
bound, as long as we choose C > 0 with |ui| ≤ CN in such a way that
[−CN,CN ]s covers the image of [−N,N ] by K. By multiplication with
suitable integers, we can also assume that the coefficients of the new system
are integers.

Proof. Every solution in x translates into a solution in u. �
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Lemma 2.5 (Lower bound). A system xTBjy = 0 with 1 ≤ j ≤ r in 2s
variables has � N2(s−r) many solutions with |xi|, |yi| ≤ N .

Proof. Lemma 2.1 shows us that the number of solutions to the system
xTBjy = hj for arbitrary fixed hj is essentially bounded by the number of
solutions to the system xTBjy = 0. If we now consider hj to be variables
as well, which have the range |hj| ≤ CjN

2 for some large enough Cj >
0 (depending on Bj), then the total number of solutions to the system
xTBjy = hj is N2s since we can choose xi and yi freely and this choice fixes
the values of all hj. We obtain

N2s =
∑
h

#{xi, yi : xTBjy = hj} �
∑
h

#{xi, yi : xTBjy = 0}

�N2r#{xi, yi : xTBjy = 0}.

�

Lemma 2.6 (Diagonal system). The system

d1x1y1 + d2x2y2 = d3x3y3 + d4x4y4,

e1x1y1 + e2x2y2 = e3x3y3 + e4x4y4,

has O(N4(logN)2) solutions with |xi|, |yi| ≤ N if and only if every 2 × 3
submatrix of (

d1 d2 d3 d4
e1 e2 e3 e4

)
has rank two.

Proof. Let us first assume that every 2 × 3 submatrix has rank two. This

implies that we can rearrange matters such that the submatrices

(
d1 d2
e1 e2

)
and

(
d3 d4
e3 e4

)
have rank two. Write the number of solutions to the sys-

tem as a sum and perform a simple Cauchy-Schwarz symmetrisation of the
coefficients.∑

|x|≤N

∑
|y|≤N

∑
n,m

d1x1y1+d2x2y2=n=d3x3y3+d4x4y4
e1x1y1+e2x2y2=m=e3x3y3+e4x4y4

1

=
∑
n,m

( ∑
d1x1y1+d2x2y2=n
e1x1y1+e2x2y2=m

1

)
·

( ∑
d3x3y3+d4x4y4=n
e3x3y3+e4x4y4=m

1

)

≤

∑
n,m

( ∑
d1x1y1+d2x2y2=n
e1x1y1+e2x2y2=m

1

)2


1/2

·

∑
n,m

( ∑
d3x3y3+d4x4y4=n
e3x3y3+e4x4y4=m

1

)2


1/2
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The first term corresponds to the system

d1x1y1 + d2x2y2 = d1x3y3 + d2x4y4,

e1x1y1 + e2x2y2 = e1x3y3 + e2x4y4,

and by taking linear combinations, we can reduce this to

x1y1 = x3y3,

x2y2 = x4y4,

which has the required number of solutions by Lemma 2.3. An equivalent
argument takes care of the other term.

In the case that there is a 2 × 3 submatrix with rank at most one, we
can simplify the system to

d1x1y1 + d2x2y2 = d3x3y3 + d4x4y4,

0 = e4x4y4.

If e4 = 0 we can show by the argument from Lemma 2.5 that the first
equation has � N6 solutions. In the case e4 6= 0 we have x4 = 0 (or
y4 = 0), which reduces the first equation to six variables and a factor of
� N from the summation over y4 (or x4). Again by Lemma 2.5 we have at
least � N5 solutions. �

The last ingredient is another simple observation about systems of linear
equations.

Lemma 2.7. Let Ay = c be a linear equations system, where all equations
are independent of ys apart from the last equation. In other words, the last
column of A is a non-zero multiple of the standard basis vector es. Then the
number of solutions to this system is bounded by the number of solutions to
A′y′ = c′, where we get A′ by removing the last column of A and y′, c′ by
removing the last entry of y and c.

Proof. For fixed values of the variables y1, . . . , ys−1, there is at most one
value of ys that makes the last equation true. �

3. The starting point

It turns out that it is sufficient to prove the main result for s = 6 in
order to get it for all s ≥ 6 as we will see in Section 7. We therefore begin
with the system of two bilinear equations in two times six variables

B1(x,y) = B2(x,y) = 0.

By taking linear combinations of the two equations, we can assume that
rank(B1) = 6 as long as we are not in the first exceptional case of Theorem
1.1.

One way to look at the system is to consider them as linear equations in
y with coefficients being linear forms in x. We get

K1(x)y1 +K2(x)y2 +K3(x)y3 +K4(x)y4 +K5(x)y5 +K6(x)y6 = 0,

L1(x)y1 + L2(x)y2 + L3(x)y3 + L4(x)y4 + L5(x)y5 + L6(x)y6 = 0.
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By a change of coordinates (Lemma 2.4), we can assume that the first
equation is diagonal. This simplifies the situation to

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

L1(x)y1 + L2(x)y2 + . . .+ L5(x)y5 + L6(x)y6 = 0.

The main difficulty to overcome is the interdependence of the two equa-
tions. Our goal will be to either extract a system with separated variables
or one with a diagonal structure.

One possible way to force independence is to set set x1 = x2 = 0. With
x′ = (0, 0, x3, x4, x5, x6) Lemma 2.1 (ii) gives us a factor of O(N2) and the
system

x3y3 + x4y4 + x5y5 + x6y6 = 0,

L1(x
′)y1 + L2(x

′)y2 + L3(x
′)y3 + . . .+ L6(x

′)y6 = 0.

This makes the first equation independent of y1 and y2. By Lemma 2.1 (iii),
we can remove the dependence of the second equation on y3, . . . , y6, which
leaves us with

x3y3 + x4y4 + x5y5 + x6y6 = 0,

L1(x
′)y1 + L2(x

′)y2 = 0.

Now that the second equation is independent of y5 and y6, we can do the
same thing to the first line and obtain the majorising system

x5y5 + x6y6 = 0,

L1(x
′)y1 + L2(x

′)y2 = 0.

If L1 and L2 depend on (x3, x4) in a non-singular way (see below), a final
change of variables would give us the system

x5y5 + x6y6 = 0,

x3y1 + x4y2 = 0.

Since we achieved independence, Lemma 2.3 gives us O(N4(logN)2) solu-
tions. To obtain the final bound, we collect the O(N2) contribution from
our first step and the O(N2) from the sum over (y3, y4).

Let us explore the conditions under which the above argument works.
Write lij for the jth coefficient of Li. So that L1(x) = l11x1 + . . . + l16x6

and L2(x) = l21x1 + . . .+ l26x6. If the matrix

(
l13 l14
l23 l24

)
has rank two, then

the change of variables from (L1(x
′), L2(x

′)) to (x3, x4) will be successful.
To understand the complementary case, we observe that we made some

arbitrary choices along the way. Consider the ‘off-diagonal’ matrix build
from the coefficients of the linear forms L1 and L2, given by(

l13 l14 l15 l16
l23 l24 l25 l26

)
.(3.1)
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Whenever this matrix has full rank, the above strategy will also work by
choosing a a possibly different pair of indices than 3 and 4, which corre-
sponds to the special case that the first two columns are linearly indepen-
dent. So in order for this not to work, we need that matrix (3.1) has rank
at most one.

On the other hand, we can set any pair of variables {xi, xj} equal to
zero in the first step of the argument, not necessarily x1 and x2. Since
the matrix (3.1) sits in the upper right corner of B2, this translates (by
permuting the variables) into the following rank condition for the matrix
B2: Any off-diagonal matrix in B2 has rank at most one. (’Off-diagonal’
means that it doesn’t contain any diagonal elements.)

Write v ⊗ w := v · wT , ei to be the ith standard basis vector and
define the off-rank of a matrix to be the maximal rank of an off-diagonal
submatrix. We have the following classification of off-rank one matrices.

Lemma 3.1. A matrix B ∈ Zs×s with off-rank one has the form

(i) B = D + v ⊗w,
(ii) B = D + v ⊗ ei + ei ⊗w or

(iii) B = D + E,

where D is a diagonal matrix, v,w ∈ Qs and E ∈ Zs×s has non-zero entries
only in a 3× 3 submatrix, which is based on the diagonal.

Proof. See Appendix A. �

Example 3.2. To get a better feeling for this concept, we give examples of
the three possible cases.

0 2 2 2 1
3 −1 6 6 3
0 0 6 0 0
1 2 2 −5 1
1 2 2 2 3

 ,


3 10 0 0 0
3 7 5 2 8
0 −2 5 0 0
0 −3 0 1 0
0 2 0 0 −4

 ,


1 17 2 0 0
3 −1 1 0 0
4 −1 6 0 0
0 0 0 6 0
0 0 0 0 2

 .

We have v = (1, 3, 0, 1, 1)T and w = (1, 2, 2, 2, 1)T for the first example.

Each of the next three sections is dealing with one of the cases in 3.1.

Remark 3.3. The off-rank zero case for B2 is covered by any of the follow-
ing sections.

4. Diagonal case (i)

In order to understand the structure of B2 = D + v ⊗ w we introduce
new variables h = xTv and l = wTy. Then the bilinear system transforms
into

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

d1x1y1 + d2x2y2 + d3x3y3 + d4x4y4 + d5x5y5 + d6x6y6 = hl,

v1x1 + v2x2 + v3x3 + v4x4 + v5x5 + v6x6 = h,

w1y1 + w2y2 + w3y3 + w4y4 + w5y5 + w6y6 = l.
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This system has now the advantage of being diagonal, while having a higher
complexity due to the two additional linear equations.

The exact behaviour of this system depends on the coefficients di, vi and
wi. We use Lemma 2.1 to set x1 = y2 = 0 similar to the procedure in the
non-degenerate case in Section 3. The linear equations in the system

x3y3 + x4y4 + x5y5 + x6y6 = 0,

d3x3y3 + d4x4y4 + d5x5y5 + d6x6y6 = hl,

v2x2 + v3x3 + v4x4 + v5x5 + v6x6 = h,

w1y1 + w3y3 + w4y4 + w5y5 + w6y6 = l,

can be dealt with by Lemma 2.7 as long as the coefficients v2 and w1 are
non zero. We end up with the reduced problem of bounding the solutions
to

x3y3 + x4y4 + x5y5 + x6y6 = 0,

d3x3y3 + d4x4y4 + d5x5y5 + d6x6y6 = hl.

By Lemma 2.6 (and Lemma 2.1) we have O(N6(logN)2) solutions as long
as not all di are equal. Together with the O(N2) contribution from Lemma
2.1 in the first step, we obtain the result.

As in the previous section, we need to analyse the argument to obtain a
good description of the complementary case. The method words if v2, w1 6=
0 and di 6= dj for some i, j ∈ {3, 4, 5, 6}. By symmetry (remaining of
variables), we can perform the argument with different sets of indices as
well.

The first step succeeds, therefore, if there are vi and wj with i 6= j, which
are both non-zero. Let us explore the complementary situation.

Case 1: vi · wj = 0 for all i 6= j.
This implies that either v = 0, w = 0 or that v and w have only one
non-zero component with the same index.

Case 1.1: w = 0 (v = 0 is equivalent by symmetry).
Since B2 = D + v ⊗w, we get the system

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

d1x1y1 + d2x2y2 + d3x3y3 + d4x4y4 + d5x5y5 + d6x6y6 = 0.

Lemma 2.6 and Lemma 2.1 give the right answer as long as the di take on
three different values. If there are only two different values for di, at least
three of the coefficients have to be the same and a linear combination (with
a renaming of variables) brings us to

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

d4x4y4 + d5x5y5 + d6x6y6 = 0,
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where d4, d5 ∈ {0, d6}. By Lemma 2.1 (iii) this simplifies further to

x1y1 + x2y2 = 0 = d4x4y4 + d5x5y5 + d6x6y6.

If d5 = d6 6= 0 or d4 = d6 6= 0, then we get the correct upper bound by
Lemma 2.3. Otherwise, we end up with at most one non-zero coefficient,
which brings us into the second exceptional case of Theorem 1.1.

Case 1.2: wj = vi = 0 for i, j ≥ 2 (similar cases by coordinate change).
The linear equations simplify to v1x1 = h and w1y1 = l and the whole
system changes into

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

(d1 − v1w1)x1y1 + d2x2y2 + d3x3y3 + d4x4y4 + d5x5y5 + d6x6y6 = 0.

This is the same situation we faced in the previous case and can be dealt
with accordingly.

Now we are going to discuss the second part of the general argument
in this section, where we needed that at least one of the coefficients di is
non-zero for 3 ≤ i ≤ 6. What happens if this is not the case?

Case 2: v1, w2 6= 0, but d3 = d4 = d5 = d6 = 0.
The system simplifies to

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

d1x1y1 + d2x2y2 = hl,

v1x1 + v2x2 + v3x3 + v4x4 + v5x5 + v6x6 = h,

w1y1 + w2y2 + w3y3 + w4y4 + w5y5 + w6y6 = l.

If any one of the coefficients v3, . . . , v6 is non-zero, we can perform the same
argument to conclude that d1 = 0. A non-zero coefficient among w3, . . . , w6

implies d2 = 0. This would imply that hl = 0 and lead to the system

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

(vT · x)(wT · y) = 0.

It corresponds to the degenerate case (2) in Theorem 1.1. Therefore, we
may assume (for example) that w3, . . . , w6 are all zero.

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

d1x1y1 + d2x2y2 = hl,

v1x1 + v2x2 + v3x3 + v4x4 + v5x5 + v6x6 = h,

w1y1 + w2y2 = l.
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Assume for now that v3 6= 0. If we set x2 = y3 = 0 by using Lemma 2.1, we
end up with

x1y1 + x4y4 + x5y5 + x6y6 = 0,

d1x1y1 = hl,

v1x1 + v3x3 + v4x4 + v5x5 + v6x6 = h,

w1y1 + w2y2 = l.

The variables x3 and y2 have non-zero coefficients and appear only in linear
equations. This allows us to use Lemma 2.7 to reduce the system to

x1y1 + x4y4 + x5y5 + x6y6 = 0,

d1x1y1 = hl,

where the number of solutions is bounded by O(N6(logN)2) by Lemma 2.6
as long as d1 6= 0.

The same argument works if one of v4, . . . , v6 is non-zero. Therefore, we
are doing fine, except when d1 = 0 or v3 = v4 = v5 = v6 = 0.

Case 2.1: v3 = v4 = v5 = v6 = 0.
By replacing the auxiliary variables h and l, the system is now given by

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

d1x1y1 + d2x2y2 = (v1x1 + v2x2)(w1y1 + w2y2).

Since the second equation is independent of the variables y5 and y6, we
can use Lemma 2.1 (iii) and Lemma 2.3 to bound the contribution of the
first equation by O(N6 logN) independent of the variables x1, y1, x2, y2 and
consider the equation

d1x1y1 + d2x2y2 = (v1x1 + v2x2)(w1y1 + w2y2)

on its own. If the rank of the corresponding matrix is two, then Lemma 2.4
and Lemma 2.3 will give the correct upper bound. If, on the other hand,
the rank is one, the we are again in the exceptional case (2) in Theorem 1.1.

Case 2.2: d1 = 0 and v3 6= 0 (for example).
We took another small step forward in removing one more coefficient from
the second bilinear equation. The system now looks like

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

d2x2y2 = hl,

v1x1 + v2x2 + v3x3 + v4x4 + v5x5 + v6x6 = h,

w1y1 + w2y2 = l.

We can also assume that d2 6= 0 since the complementary case is covered
earlier in ‘Case 2’. The final case analysis is whether w1 = 0 or not. If
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w1 = 0, we obtain

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

(d2x2 − w2h)y2 = 0,

v1x1 + v2x2 + v3x3 + v4x4 + v5x5 + v6x6 = h.

If we insert the linear equation into the second equation, we see that the
corresponding matrix has rank one. Therefore, we are in the exceptional
case (2) of Theorem 1.1.

If w1 6= 0, on the other hand, we can set x1 = 0 = y3 by Lemma 2.1 and
reduce the problem to

x2y2 + x4y4 + x5y5 + x6y6 = 0,

d2x2y2 = hl,

v2x2 + v3x3 + v4x4 + v5x5 + v6x6 = h,

w1y1 + w2y2 = l.

The variables x3 and y1 have non-zero coefficients and Lemma 2.7 allows us
to remove the linear equations. The remaining system

x2y2 + x4y4 + x5y5 + x6y6 = 0,

d2x2y2 = hl,

has O(N6(logN)2) solutions by Lemma 2.6.

5. Parameter Case (ii)

Now we have B = D+v⊗ ei + ei⊗w. By a change of variables, we can
assume that i = 1 and obtain the form

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

d1x1y1 + d2x2y2 + d3x3y3 + d4x4y4 + d5x5y5 + d6x6y6 = y1L(x) + x1M(y)

for the linear forms L(x) = vTx and M(y) = wTy. The approach here is
similar to the one in the previous section.

First we set x1 = y1 = 0 with the help of Lemma 2.1 and analyse the
simpler system

x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

d2x2y2 + d3x3y3 + d4x4y4 + d5x5y5 + d6x6y6 = 0.

If the di take on more than two values, we are done by Lemma 2.6. Other-
wise, we can take linear combinations and simplify further to

x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

d5x5y5 + d6x6y6 = 0,

where d5 ∈ {0, d6} (after a renaming of variables).
If d5 = d6 6= 0, we are given the right upper bound by Lemma 2.6 again.

Otherwise, we have d5 = 0 and have found that our original system must
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have the form

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

d6x6y6 = y1L(x) + x1M(y)

Here, we can use Lemma 2.1 to set x1 = 0. This makes the second
equation independent of y2, . . . , y5. By Lemma 2.1 (iii), this implies that
we can simplify the system to

x2y2 + x3y3 + x4y4 + x5y5 = 0,

d6x6y6 = y1L(0, x2, . . . , x6).

If vi 6= 0 for some i ∈ {2, 3, 4, 5}, we can apply Lemma 2.1 (iii) again to
remove the term xiyi from the first equation and then change coordinates
with Lemma 2.4 to obtain (here i = 2 for example)

x3y3 + x4y4 + x5y5 = 0,

d6x6y6 = y1x2,

which has the right upper bound for the number of solutions by Lemma 2.6
as long as d6 6= 0.

This implies that we have the correct upper bound, except if d6 = 0 or
L(x) = L(x1, 0, 0, 0, 0, x6). A symmetric argument gives us the same con-
clusion with the condition d6 = 0 or M(y) = M(y1, y6).

Case 1: d6 = 0.
The system now simplifies to

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

y1L(x) + x1M(y) = 0.

Here we need a slightly unusual procedure. We set h = L(x) and l = M(y)
to lift the system to

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

y1h+ x1l = 0,

L(x) = h,

M(y) = l.

Now we perform Lemma 2.1 (iii) two times. One time with the set {x2, . . . , x6}
and a second time with {y2, . . . , y6}. This leaves us with the homogeneous
system

x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

y1h+ x1l = 0,

L(0, x2, . . . , x6) = 0,

M(0, y2, . . . , y6) = 0.

The second equation has four independent variables, which givesO(N2 logN)
by Lemma 2.3. The remaining system is an intersection of a diagonal bilin-
ear form in 2 · 5 variables with two linear equations. The resulting bilinear
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form has rank at least three and if those two equations aren’t degenerate,
we have the correct upper bound by Lemma 2.3.

Degenerate means here that one of the original linear forms L of M has
to depend only on x1 or y1. This would lead to a system of the shape

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

(v1y1 +M(y))x1 = 0,

(or the equivalent for M(y) = w1y1), which has rank one in the second
equation and corresponds to the exceptional case (2) in Theorem 1.1.

Case 2: vi = wi = 0 for i ∈ {2, 3, 4, 5}.
In this case, we are left with the system

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

(v1 + w1)x1y1 + d6x6y6 = v6x6y1 + w6x1y6.

We have seen this before in Case 2.1 of the previous section. Lemma 2.1
with Lemma 2.6 are sufficient to deal with it.

6. Pertubation Case (iii)

In this last case we have B = D+E, where (we can assume that) E has
only non-zero entries in the upper left 3× 3 corner. This corresponds to a
system of the form

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

L1(x
′)y1 + L2(x

′)y2 + L3(x
′)y3 + d4x4y4 + d5x5y5 + d6x6y6 = 0,

with x′ = (x1, x2, x3, 0, 0, 0).
We use Lemma 2.1 to set x1 = x2 = 0 and y1 = y2 = 0, which reduces

the problem to a diagonal one of the form

x3y3 + x4y4 + x5y5 + x6y6 = 0,

l33x3y3 + d4x4y4 + d5x5y5 + d6x6y6 = 0.

By Lemma 2.6 we can deal with this situation, if the coefficients l33, d4, d5, d6
take on three different values. Otherwise, we can assume that d5 = d6.

Taking linear combinations in the original system, we therefore can sim-
plify our problem to

x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 = 0,

L1(x
′)y1 + L2(x

′)y2 + L3(x
′)y3 + d4x4y4 = 0.

Since the second equations doesn’t depend on y5 and y6 Lemma 2.1 (iii)
reduces the problem further to

x5y5 + x6y6 = 0,

L1(x
′)y1 + L2(x

′)y2 + L3(x
′)y3 + d4x4y4 = 0.

Both equations are independent of each other. The first gives a bound
of O(N2 logN) by Lemma 2.3 and the second is fine as well by the same
argument (with a coordinate change before), as long as the corresponding
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matrix has rank at least two. Otherwise we are in the exceptional case (2)
of Theorem 1.1.

7. Extension to s > 6

What happens, when the number of variables is larger then six? Either
every linear combination of the two matrices has rank at most five, which
brings us to the exceptional case (1) in Theorem 1.1, or we can find a change
of coordinates, such that our system looks like

x1y1 + . . .+ x6y6 + d7x7y7 + . . .+ dsxsys = 0,

L1(x)y1 + . . .+ L6(x)y6 + L7(x)y7 + . . .+ Ls(x)ys = 0.
(7.1)

with di ∈ {0, 1}. Setting xi = yi = 0 for all i ≥ 7 by Lemma 2.1, we can
use the result for s = 6 to see that we either get the general result or that
we can add a multiple of the first equation to ensure that L1, . . . , L6 are
multiples of each other.

We can apply the same argument for any set of six variables for which
di 6= 0. This results in the following structure for some value f ≥ 6.

x1y1 + . . .+ xfyf = 0,

L(x)y1 + . . .+ L(x)yf + Lf+1(x)yf+1 + . . .+ Ls(x)ys = 0.

By Lemma 2.1 this can be reduced to

x1y1 + . . .+ xfyf = 0,

Lf+1(x)yf+1 + . . .+ Ls(x)ys = 0,

and we are done, as long as these linear forms Lj are not all multiples of
each other.

In the complementary case, the rank of the second equation in (7.1) is
at most two. If it is less than two, we are done. Otherwise we perform a
suitable change of coordinates, swap the equations, and obtain the form

x1y1 + x2y2 = 0,

L̃1(x)y1 + . . .+ L̃s(x)ys = 0.

for some other linear forms L̃1, . . . , L̃s. Since the second equation must have
rank at least four, we can find two linear forms Li and Lj for i > j > 2,
which are linearly independent. An application of Lemma 2.1 gives the
system

x1y1 + x2y2 = 0,

Li(x)yi + Lj(x)yj = 0

and we are done. This is the end of the proof for Theorem 1.1.
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Appendix A. Proof of Lemma 3.1

Let B be a matrix with off-rank one. By permuting variables, if neces-
sary, we can assume that B has the form

B =

a r mT

s b nT

v w C

 ,

where r 6= 0 and m,n,v,w ∈ Zs−2. The following lemma is the first step
to understand the structure of B.

Lemma A.1. For the above matrix we have

C = wmT/r +D,

where D is a diagonal matrix.

Proof. Consider the 2 × 2 submatrix

(
r mj

wi cij

)
for some i 6= j. Since the

off-rank is one, this matrix has rank at most one. Since r 6= 0 it must be at
least one. A short calculation shows that cij = wimj/r. �

Since the off-rank of B is one, we also get that v = λu,w = µu and
m = αk,n = βk for some u,k ∈ Zs−2\{0} and λ, µ, α, β ∈ Q. We obtain

B =

 a r αkT

s b βkT

λu µu C

 ,

Case 1: α = 0.
This implies that C is diagonal.

Case 1.1: There are i 6= j such that ui 6= 0 and kj 6= 0

Consider the off-diagonal matrix

(
s βkj
λui cij

)
. Since cij = 0, we conclude

that β = 0 or λ = 0.

Case 1.1.1: λ = 0.
We are in case (ii) of Lemma 3.1 and done.

Case 1.1.2: β = 0 and λ 6= 0.
If µ = 0, we are in case (ii) again. Otherwise we have to show that we can
choose entries x, y in  x r 0T

s y 0T

λu µu O

 ,

such that the resulting matrix has rank one. Choose x = rλ/µ and y =
sµ/λ. It follows that B = D + v ⊗ w for some v,w ∈ Qs and a diagonal
matrix D, which corresponds to case (i).

Case 1.2: For all i 6= j we have ui = 0 or kj = 0.
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The condition implies that u = 0,k = 0 or that there is at most one
index i such that ui 6= 0 and ki 6= 0.

Case 1.2.1: u = 0.
We are in case (ii) of Lemma 3.1.

Case 1.2.2: k = 0.
This brings us back to the Cases 1.1.1 and 1.1.2.

Case 1.2.3: uj = kj = 0 for all j 6= i for some fixed i.
This implies that only the 1st, 2nd and ith row/column have non-zero non-
diagonal entries, which brings us into case (iii).

Case 2: µ = 0.
This is completely analogous to Case 1.

Case 3: α 6= 0 and µ 6= 0.
Now there is at least one non-diagonal entry cij 6= 0. Consider the matrix(
s βkj
λui cij

)
. We know that cij = µuiαkj/r. This implies that the matrix

can have rank one only if s = λβuikj/cij = rλβ
µα

. If we consider B modulo

diagonal matrices, we see that we can choose x and y such that x r αkT

rλβ/µα y βkT

λu µu αµukT/r

 ,

has rank one by setting x = rλ/µ and y = rβ/α. This gives us case (i) in
Lemma 3.1.
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