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Abstract. We generalize Roth’s theorem on three term arithmetic pro-
gressions to translation invariant quadratic forms in at least 17 variables.
We use Fourier-analysis, restriction theory, uniformity norms and Roth’s
density increment method to show quantitative estimates for subsets of
the integers without any non-trivial solutions.

1. Introduction

In 1953 Roth [18] proved his theorem on 3-term arithmetic progressions
in dense sets. It states that a subset A ⊂ {1, 2, . . . , N} with no arithmetic
progresions of the form x, x+h, x+ 2h with h ≥ 1 cannot be too large. His
theorem gives the bound |A| ≤ CN(log logN)−1 for some constant C ≥ 1.
In other words, it is not possible to avoid 3-term arithmetic progressions as
long as the density of the set A is big enough.

Arithmetic progressions can also be described as solutions to translation
invariant equations (see explanation at the end of the introduction). In the
case of 3-term progressions we have the equation x1 − 2x2 + x3 = 0. Roth
[19] went on to prove a version of his theorem for solutions to translation
invariant linear systems in k equations with at least 2k+1 variables. By re-
cent work of Gowers [8] we can now solve translation invariant systems with
as few as k+ 2 variables in sets A of cardinality at least CkN(log logN)−ck

for some Ck, ck > 0.
The aim of this work is to combine the ideas of Gowers [8], Green [9],

Liu [16], Roth [18] and the previous work of the author [15] to give a version
of Roth’s theorem for quadratic forms.

Theorem 1.1. Let xTQx = 0 be a translation invariant quadratic equation
in s ≥ 17 variables. Assume that it has a non-singular real solution, but
only trivial solutions when the variables are restricted to A ⊂ {1, 2, . . . , N}.
Then |A| ≤ CQN(log logN)−c for some c, CQ > 0.

Theorem 1.1 will follow from the more precise Theorem 2.2. In most
cases we only need s ≥ 10 variables as in the work of Liu [16]. The bound
s ≥ 17 is a worst case scenario and can certainly be improved by a more
complicated analysis.
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The next observation is that the exponent c in CQN(log logN)−c is inde-
pendent of the quadratic form Q and the number of variables s (we use the
letter Q interchangeably for the quadratic form and the underlying matrix).
If one would allow such a dependence, it is possible to derive the above the-
orem (even for all s ≥ 5) by the methods of Gowers [8] as follows. Take
any integer y with Q(y) = 0 (see Lemma 2.3) and consider the patterns
(a+ qy1, . . . , a+ qys) for a ∈ Z and q ∈ N. Then the approach in [8] shows
that a set that doesn’t contain any of those patterns, must have a density
bounded by CQN(log logN)−cs .

We want to point out that it is very likely that the methods of this work
can be adapted to give an asymptotic count of the number of solutions to
Q(x) = 0 for xi ∈ B for some relatively structured set B such as the primes,
for example. This is not possible by relying on the work of [8] or other
purely additive combinatorial results from the linear theory. This explains
some of the motivation behind Theorem 1.1.

Recent years have seen huge advances in our understanding of linear
equations in primes. Work of Green [9] and Green and Tao [11] introduced
the concept of a ‘pseudorandom measure’, which led to amazing new de-
velopments in the linear theory [12]. These results can be used to find
prime solutions for general diophantine equations, such as in recent work of
Brüdern, Dietmann, Liu and Wooley [2] on the Birch-Goldbach problem.

If one is interested in asymptotics, on the other hand, one has to deal
with the non-linear theory directly. Recent work on prime solutions for
quadratic forms by Liu [16] uses a variant of the circle method to deal with
a large class of quadratic forms in at least ten variables and provides one of
the main ideas for this work.

Previous work on diagonal translation invariant forms was carried out
by Smith [21], who considers the system

λ1x
2
1 + λ2x

2
2 + . . .+ λsx

2
s = 0,

λ1x1 + λ2x2 + . . .+ λsxs = 0

with λ1 + . . . + λs = 0 in s ≥ 9 variables. The author simplified Smith’s
approach in [15] and reduced the number of variables down to s ≥ 7. The
methods of [15] play a significant role in the development of this work and
we cite several results from [15] to simplify the exposition here. Readers
interested in the restriction theory part of the argument are adviced to
have a look at [15] for more explanations.

Before proceeding to the main part of the paper, we want to give the
reader the opportunity to gain some intuition about the consequences of as-
suming ‘translation invariance’ in the context of quadratic forms. For linear
equations, this geometric condition translates into the arithmetic statement
that the sum of the coefficients in each equation is zero. This is also true
for the diagonal quadratic system considered above. For a quadratic form
Q(x) := xTQx = 0 with a symmetric matrix Q ∈ Zs×s translation in-
variance means that Q(x + h1) = Q(x) for all x ∈ Zs and h ∈ Z, where
1 = (1, . . . , 1)T ∈ Zs.
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This implies that Q(h1) = Q(0) = 0. We call the multiples of 1 the
trivial solutions to our quadric. If we expand Q(x + h1), we obtain

Q(x) = Q(x + h1) = Q(x) + 2hxTQ1 + h2Q(1).

It follows that Q1 = 0 and it is easy to check that it is a sufficient condition
as well.

Another way of looking at this issue is to set h = −xs. Then we get
Q(x−xs1) = Q(x) and, therefore, any translation invariant quadratic form
can be written in the form Q′(x1 − xs, . . . , xs−1 − xs) for some arbitrary
quadratic form Q′ in s− 1 variables.

To prove Theorem 1.1, it is not always necessary to assume translation
invariance, as can be seen from considering only the first equation from
the diagonal quadratic system above, but the condition Q(1) = 0 is clearly
necessary. Otherwise, we can choose A as the set of numbers congruent
to one modulo n, where n is some large number (dependent only on the
coefficients of Q) and obtain a contradiction.

Acknowledgements:
This work is part of the author’s Ph.D. thesis and he would like to thank
his supervisor Trevor Wooley for proposing the topic and constant encour-
agement. The doctoral studies of the author were partially supported by
the EPSRC.

2. Notation and General Discussion

First we remind the reader about some standard notation. We write
e(x) = exp(2πix) and use f = O(g) to express that |f | ≤ Cg for some
constant C > 0 and similarly Vinogradov’s notation f � g. We indicate
dependencies on parameters by subscripts as inOp(N

s) or�P,ε, for example.
The parameter N ∈ N, governing the size of the variables xi should be
thought of as large and we write [1, N ] as abbreviation for the interval
{1, 2, . . . , N}. The set A is always a subset of [1, N ] with density δ = |A|/N
and indicator function 1A. The balanced function f(x) = 1A(x) − δ plays
an important role at various places in this paper.

Bold face letters such as x denote vectors with components xi and in-
equalities such as x ≤ N or x ≤ y should be understood component-
wise. A sum over natural numbers starts at one, if not otherwise indicated.
The symbol T is used to refer to the ‘circle’ R/Z with the circle norm
‖α‖ := min{|α− z| : z ∈ Z}, the distance of α ∈ R to the nearest integer.

We don’t want to distinguish between quadratic forms that are related
by a simple renaming of variables. Given two matrices A and B in Rs×s we
say they are permutation-equivalent if

A = P TBP

for an invertable matrix P ∈ {0, 1}s×s.
To explain the general structure of the work and the main theorem, we

consider the following property of quadratic forms.
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Definition 2.1 (Off-diagonal rank). For a symmetric matrix Q ∈ Rs×s we
consider matrices M that are permutation equivalent to Q and write them
in the form

M =

(
A B
BT C

)
for some matrices A,B and C. Then the off-rank r of Q is defined as

r = max{rank(B) : M is permutation equivalent to Q}.

In other words, this is the maximal rank of a submatrix in Q, that doesn’t
contain any diagonal elements.

The off-rank r of a matrix determines the treatment of the correspond-
ing quadratic equation. While for r ≥ 5 we can apply the bilinear sum
method inspired by the work of Liu [16] on prime solutions for quadratic
forms, we need a more complicated approach for r ≤ 4, based on ’partial
diagonalisation’. This leads to the following main result of this work.

Theorem 2.2. Let Q ∈ Zs×s be symmetric with Q · 1 = 0 and off-rank r.
Assume that Q(x) = 0 has a non-singular real solution and assume that s ≥
5+3r for 1 ≤ r ≤ 4 and s ≥ 10 for r ≥ 5. If there are only trivial solutions,
when the variables are restricted to A ⊂ [1, N ], then |A| �Q N(log logN)−c

for some c > 0 independent of Q.

Remark. Almost all quadratic forms in at least 10 variables have off-rank
at least five. The exceptional cases lie in a lower-dimensional submanifold,
meaning that we need only s ≥ 10 for almost all quadratic forms.

Apart from the off-rank problem, there is the general issue of positive
definiteness that needs to be addressed in the case of quadratic forms. We
saw in the introduction that any translation invariant quadratic form can be
written in the form Q(x) = Q(x− xs1) = Q′(x1− xs, . . . , xs−1− xs), where
the matrix for the quadratic form Q′ is given by the upper left submatrix
of size (s− 1)× (s− 1) in Q. Now we can diagonalize Q′(z1, . . . , zs−1) = 0
over Z, where zi = xi − xs. This can be done by completing the square
successively and then multiplying by a suitable integer to ensure that the
rational coefficients that appear during this process become integers again.
We get for some λj ∈ Z an equation of the form

λ1y
2
1 + . . .+ λs−1y

2
s−1 = 0,(2.1)

where the yi are independent linear forms in the variables zi or equivalently,
translation invariant linear forms in the variables x1, . . . , xs. If we have
λi ≥ 0 for all 1 ≤ i ≤ s, then all real solutions to this quadric are singular
and this case is excluded by the assumptions in Theorem 2.2. This is also
true for the case when λi ≤ 0 for all 1 ≤ i ≤ s.

In the remaining cases we have at least one negative and at least one
positive coefficient λi. The existence of coefficients of both signs is equiv-
alent to the existence of a non-singular real solution. If the number t of
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non-zero coefficients λi is less than five, we can get problems with p-adic
solubility as in the example

y21 + y22 − 3(y23 + y24) = 0,

where we have only the zero solutions modulo eight. In this case we consider
the linear system yk = 0 for 1 ≤ k ≤ t ≤ 4 instead. This case is covered in
Section 8.

For most quadratic forms we have t ≥ 5 and have the following Lemma.

Lemma 2.3. If s ≥ 5, di 6= 0 for 1 ≤ i ≤ s and not all coefficients di in

d1x
2
1 + . . .+ dsx

2
s = 0,(2.2)

have the same sign, then (2.2) has C(d)N s−2 + o(N s−2) solutions with xi ∈
[1, N ] for some constant C(d) > 0 dependent on the coefficients di.

Proof. The proof is essentially given in Chapter 8 of [5]. Chapter 2 of [23]
also contains all the necessary estimates to deduce the result. Another
approach can be found in the recent paper [14]. �

The last ingredient for the proof of Theorem 2.2 are Lp-properties for
certain exponential sums. For a function g : N → C and A ⊂ [1, N ] we
define

Lg(α) =
∑
z≤N

g(z)e(αz) and Vg(α, β) =
∑
x≤N

g(x)e(αx2 + βx)(2.3)

and write LA(α) or VA(α, β) in the case g = 1A and L(α), V (α, β) for the
sums without any weight g. We use Appendix C to derive two useful Lp

estimates along the lines of [15].
The general structure of the paper is as follows. In Section 3 we treat

the case r ≥ 5 with a refinement of Liu’s method [16]. Appendix A provides
the new necessary ingredient, a sharp ‘Vinogradov lemma’. In Sections 4 to
6 we consider the non-degenerate part of the case r ≤ 4 and use ‘convexity’
methods to simplify our mean-value integrals to deduce a correlation esti-
mate for the exponential sums in (2.3) with g = f . In Section 7, we use the
correlation estimates to prove Theorem 2.2. Section 8 finally deals with the
degenerate cases, where we can extract a linear subsystem from Q, which
can be treated by Gowers’ theory [8]. Appendix B provides a short proof
for the uniformity norm estimate for completeness.

3. The Bilinear Sum Method

The main goal of this section is to deduce correlation estimate (3.7) in
the case r ≥ 5. We follow Liu [16] and simplify his approach by removing
the ‘geometry of numbers’ argument. For a quadratic form Q(x) = xTQx
define the exponential sum

Sg(α) =
∑
x≤N

g(x)e(αQ(x)),

where g(x) =
∏s

i=1 gi(xi) and |gi| ≤ 1. The main technical result in this
section is an Lp-estimate for this quadratic exponential sum.
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Theorem 3.1. Let Q have off-rank r ≥ 1. Then for p > 4/r we have∫ 1

0

|Sg(α)|p dα�p N
ps−2.

Assume the L1-bound
∑

x≤N |gi(x)| ≤ 2δN and r ≥ 5. Then p > 4/5 implies∫ 1

0

|Sg(α)|p dα�p,s δ
(s−10)pNps−2.

Proof. The matrix Q is permutation equivalent to a matrix of the form(
A R
RT B

)
with rank(R) = r. To simplify notation, we can also assume that the first
r rows of B are linearly independent. Decompose the variables x = (xa,xb)
accordingly into two blocks of sizes a and b with at least r variables each.
Then the quadratic form Q(x) has the representation

Q(x) = xTaAxa + 2xTaRxb + xTb Bxb,

Write g(xa) =
∏a

i=1 gi(xi) and g(xb) =
∏s

i=a+1 gi(xi). Then we have the
estimate

|Sg(α)| =
∣∣∣ ∑
xa≤N

∑
xb≤N

g(xa)g(xb)e(α(xTaAxa + 2xTaRxb + xbBxb))
∣∣∣

≤
∑
xa≤N

∣∣∣ ∑
xb≤N

g(xb)e(α(2xTaRxb + xbBxb))
∣∣∣

≤Na/2
( ∑

xa≤N

∣∣∣ ∑
xb≤N

g(xb)e(α(2xTaRxb + xbBxb))
∣∣∣2)1/2

by the inequality of Cauchy-Schwarz. The expression in the parentheses on
the right hand side is∑

xb≤N

∑
x′b≤N

g(xb)g(x′b)
∑
xa≤N

e(α(2xTaR(xb − x′b) + xbBxb − x′bBx′b))

≤
∑
xb≤N

∑
x′b≤N

∣∣∣ ∑
xa≤N

e(2αxTaR(xb − x′b))
∣∣∣

≤
∑
xb≤N

∑
x′b≤N

a∏
i=1

min
(
N, ‖2αRi(xb − x′b)‖−1

)
where Ri is the ith row of R.

Consider the equations yi = 2Ri(xb − x′b). The variables yi can vary
over an interval [−PN,PN ] for some constant P depending on the size of
the coefficients of R. Since R has rank r, the system of equations yi =
2Ri(xb − x′b) has O(N2b−r) solutions for given |y1|, . . . , |yr| ≤ PN . We
bound the other a− r factors (i > r) trivially by N and obtain the bound

|Sg(α)|2 � N2b+2a−2r
∑
|y|≤M

r∏
i=1

min
(
N, ‖αyi‖−1

)
.
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Since a + b = s and the inner expression factors into r independent sums,
we can apply Lemma A.1. Write α = a/q + β with |β| ≤ 1/(qN) for some
q ≤ N by Dirichlet’s approximation theorem and define

K(α) =
(
N log q + min

{N2

q
,
| log(|β|N2)|+ 1

|β|q

})1/2
.(3.1)

If the representation of α turns out to be non-unique, we take the minimal
value attained by the various functions on the right hand side of (3.1). With
this definition, we get from Lemma A.1 the estimate

|Sg(α)| � N s−rK(α)r.(3.2)

To obtain the first Lp-bound in Theorem 3.1 we prove the following useful
lemma.

Lemma 3.2. For p > 4 we have
∫ 1

0
|K(α)|p dα�p N

p−2.

Proof. We decompose [0, 1] according to the Dirichlet approximations, which
give us ∫ 1

0

|K(α)|p dα�
∑
q≤N

q∑
a=1

∫
|β|≤1/(qN)

|K(a/q + β)|p dβ,

where the summation in a is only over the elements with (a; q) = 1. We
decompose the integration over β further into sets with |β| ≤ N−2 and a
dyadic decomposition |β| ∈ (2iN−2, 2i+1N−2] for 0 ≤ i ≤ log2(Nq

−1). For
|β| ≤ N−2 we get by (3.1) the contribution∑

q≤N

q∑
a=1

N−2
(
N log q +N2q−1

)p/2
� Np−2.

On each dyadic part |β| ∈ (2iN−2, 2i+1N−2], we obtain the contribution

2iN−2
(
N log q +N2(i+ 1)2−iq−1

)p/2
.

Apply the bound |x+ y|p/2 � |x|p/2 + |y|p/2 and sum over i to arrive at∑
q≤N

q∑
a=1

(
(Nq)−1(N log q)p/2 +N−2(N2/q)p/2

)
� Np−2.

�

Now the first part of Theorem 3.1 follows from (3.2). For the second
part we have r ≥ 5. By permutation equivalence we may assume, that

Q =

 A R X
RT B Y
XT Y T C

 ,(3.3)

where R ∈ R5×5 is a full rank matrix. We can divide the variable vector x
into (xa,xb,xc), where xa and xb contain five variables and xc the remaining
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s− 10 variables. Then we have the bound

|Sg(α)| ≤
∑
xc≤N

|gc(xc)|
∣∣∣ ∑
xa≤N

∑
xb≤N

ga(xa)gb(xb)e(αQ(x))
∣∣∣,(3.4)

where the functions ga, gb and gc are defined in a similarlar way as above. If
we expand the quadratic form Q(x) by use of (3.3) and the decomposition
(xa,xb,xc) we get

xTQx = (xTa ,x
T
b )

(
A R
RT B

)(
xa
xb

)
+ 2xTaXxc + 2xTb Y xc + xTc Cxc.(3.5)

The last summand depends only on xc and will disappear due to the absolute
value signs in (3.4). The other two parts which contain xc can be seen as
a sum of linear forms Li,xc(xi) for i ≤ 10. Therefore, the absolute value of
the inner sum in (3.4) can be seen as |Sh(α)| for a new function

hxc(xa,xb) =
10∏
i=1

gi(xi)e(αLi,xc(xi))

and the quadratic form corresponding to the 10× 10 matrix in (3.5).
For p > 4/5 we use (3.2) and obtain the bound∫ 1

0

|Sg(α)|p dα ≤
∫ 1

0

∣∣∣ ∑
xc≤N

|gc(xc)||Sh(α)|
∣∣∣p dα

�
∫ 1

0

∣∣∣ ∑
xc≤N

|gc(xc)|N5K(α)5
∣∣∣p dα� ( ∑

xc≤N

|gc(xc)|
)p
N10p−2.

The result now follows from the assumption
∑

x≤N |gi(x)| ≤ 2δN . �

Having proven Theorem 3.1, we can deduce a correlation estimate for the
exponential sum Sg(α) in the cases r ≥ 5. From the discussion of Section
2, the assumption in Theorem 2.2, we have by Lemma 2.3 the lower bound∫ 1

0

S(α) dα� N s−2,

where S(α) is the exponential sum with g = 1. On the other hand, if we
write SA(α) for the exponential sum with the indicator function g = 1A of
the set A, we obtain ∫ 1

0

SA(α) dα = δN

since there are only trivial solutions in the set A. By comparing those two
quantities, we derive ∫ 1

0

|Sg(α)| dα� δsN s−2

for g(x) = 1As(x) − δs with δ = |A|/N as long as N �Q δ−2, say. While
this function g doesn’t satisfy the conditions of Theorem 3.1, we can write
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it as a finite sum g(x) =
∑s

i=1 fi(x) of functions

fi(x) = (1A(xi)− δ)δi−1
∏
j>i

1A(xj),(3.6)

that factor into a product of factors hj. Each of those satisfies the L1-
condition

∑
x≤N |hj| ≤ 2δN . Therefore, by part two of Theorem 3.1 we

have for some i ≤ s the estimate

δsN s−2 � sup
α
|Sfi(α)|1−p

∫ 1

0

|Sfi(α)|p dα

� sup
α
|Sfi(α)|1−p(δN)(s−10)pN10p−2.

Now set p = 8/9 > 4/5, for example, and deduce the correlation estimate

sup
α
|Sfi(α)| � δs+80N s.(3.7)

This correlation estimate is used in Section 7 to run the usual density in-
crement method of Roth [18].

4. Partial diagonalisation

The correlation estimate for the case r ≤ 4 requires more work and the
problem splits into several subcases. In this section we take the first step
and prove a structure result for quadratic forms of low off-rank to extract
a partial diagonal structure.

By permutation equivalence, we may assume that

Q =

 A R M
RT B N
MT NT C

 ,(4.1)

where R ∈ Rr×r is a full rank matrix. We want to show that we can
‘diagonalize’ C by adding at most r linear equations to Q(x) = 0. Since the
size of the matrix C in (4.1) is s−2r, we can hope that methods for diagonal
quadrics can provide solutions, as long as s is not too small compared to r.
We begin by stating a simple lemma.

Lemma 4.1. Let R ∈ Rr×r be a full rank matrix and v,w ∈ Rr, then there
is exactly one c ∈ R such that the matrix(

R v
wT c

)
has rank r, namely c = wTR−1v.

Proof. Multiplication by an invertable matrix on the left leads to the relation(
R−1 0

wTR−1 −1

)(
R v

wT c

)
=

(
Er R−1v
0 wTR−1v − c

)
,

where Er ∈ Zr×r is the identity matrix. This implies the result. �

Now we apply Lemma 4.1 to ‘diagonalize’ C.
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Lemma 4.2. Let M,N,C,R be the matrices from (4.1). Then

C = NTR−1M +D,

where D is a diagonal matrix.

Proof. For a fixed element cij from C with i 6= j consider the matrix(
R mj

nTi cij

)
,

where mj,n
T
i are the jth column and ith row from the matrices M and

NT respectively. This is a submatrix of Q that lies completely off-diagonal
and, therefore, cannot have rank more than r. By Lemma 4.1, we get
cij = nTi R

−1mj, which gives the desired claim. �

Lemma 4.2 says that there is a diagonal matrix D such that the rows
of C −D are linear combinations of rows of M . The next step is to find a
common basis of linear forms, that span the rows of M , N and C −D.

Lemma 4.3. Let M,N be as in (4.1). There is a matrix H ∈ Zt×(s−2r) with

t ≤ r and linearly independent rows such that M = M̂H and N = N̂H for
some matrices M̂, N̂ ∈ Qr×t.

Proof. The submatrix consisting of M and N , as in (4.1), namely(
M
N

)
,

has rank t with t ≤ r, since Q has off-rank r. One can find t rows which
span the rowspace of this matrix. Arrange these into a single matrix H.
Then we can write (

M
N

)
=

(
M̂

N̂

)
·H,

for some matrices M̂, N̂ ∈ Qr×t. �

Combining Lemma 4.2 and Lemma 4.3, we obtain

C = HT N̂TR−1M̂H +D.(4.2)

This insight is sufficient to diagonalize C. But there is another technical
rank condition on H that we need for later parts of this chapter, which
requires another step of linear algebra. Consider the following property for
matrices.

AP: If we remove any column from H ∈ Zt×g, then the remaining matrix
contains two disjoint t× t non-singular submatrices.

This is the key property for the application of the classical circle method.
We can always ensure that it is satisfied by passing to a submatrix and the
use of the following lemma.

Lemma 4.4. Let A be a t ×m matrix over a field K and q be a positive
integer. Then either A includes q disjoint t × t non-singular submatrices
or all but at most q(t − d) − 1 columns are contained in a d-dimensional
subspace for some 0 ≤ d ≤ t− 1.
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Proof. This is a special case of Proposition 6.45 in [1] and a proof may also
be found in [17]. �

Now, either H satisfies the property [AP] or we can remove the ‘bad’
column and apply Lemma 4.4 with q = 2. This gives us that at most
2(r − d) − 1 columns are not contained in a d-dimensional subspace for
some 0 ≤ d ≤ r − 1. Remove these other exceptional columns as well and
we obtain a matrix H with rank at most d and w ≥ s−2r−2(r−d) columns.
Rename variables if necessary and write H =

(
H ′ H

)
. By splitting the

other matrices accordingly, we arrive at the form

Q =


A R M ′ M
RT B N ′ N
M ′T N ′T C11 C12

M
T

N
T

CT
12 C22

 ,

where M = M̂H, N = N̂H, M ′ = M̂H ′, N ′ = N̂H ′. The matrix C
splits according to formula (4.2) into parts C11, C12, C

T
12, C22 with C12 =

H ′T N̂TR−1M̂H, for example.
If we choose d minimal in the above procedure, we end up with a matrix

H that contains d linearly independent rows, which (as a matrix) satisfy
property [AP]. Otherwise, we could apply Lemma 4.4 again and obtain the
same result for a smaller value of d.

Now we decompose our variables suitable for this decomposition. Since
H has w columns, we have C22 ∈ Zw×w with w ≥ s − 4r + 2d > 0 if
s ≥ 5 + 3r. Call the first s − w variables y = (y1, . . . , ys−w) and the
remaining w variables x = (x1, . . . , xw). The original equation xTQx = 0
decomposes into

yT

 A R M ′

RT B N ′

M ′T N ′T C11

y + 2yT

M
N
C12

x + xTC22x = 0.(4.3)

For 1 ≤ i ≤ d we add linear equations

µi1x1 + . . .+ µitxw = hi,

where the coefficients µij ∈ Z correspond to d linearly independent rows of
H that satisfy [AP]. The variables hi may have any integer value, but due
to the restrictions on the xj they will range over a bounded interval of size
OQ(N) as well. Any occurrence of the term Hx can now be replaced by a
suitable linear combination of the variables h. Write Z1 for the first matrix

in (4.3) and Z2 =
(
M̂ N̂ H ′T N̂TR−1M̂

)T
. From equation (4.2) we obtain

C22 = H
T
N̂TR−1M̂H +D1

for a diagonal matrix D1 and can replace xTC22x by hTZ3h + xTD1x with
Z3 = N̂TR−1M̂ . Then equation (4.3) changes into

yTZ1y + 2yTZ2h + hTZ3h + xTD1x = 0.
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Combine the parts, which only contain y and h, into a single quadratic form

P (y,h) =
(
yT hT

)(Z1 Z2

ZT
2 Z3

)(
y
h

)
.

If we write λi for the diagonal entries in D1, we obtain the system

λ1x
2
1 + . . .+ λwx

2
w = P (y,h),

µ11x1 + . . .+ µ1wxw = h1,

...
...

...

µd1x1 + . . .+ µdwxw = hd,

(4.4)

where the matrix (µij) ∈ Zd×w has property [AP] and the matrix of the
quadratic form P has off-rank at least r ≥ d uniformly in h. The number of
diagonal variables is at least w ≥ s−4r+2d, which is at least 5+2d−r > 0
for s ≥ 5 + 3r and r ≤ 4.

If necessary, we can multiply the first equation (4.4) by a suitable non-
zero integer to ensure that all the entries in the matrix P are integers,
thereby avoiding any complications later.

5. Preparation for Section 6

In Section 4 we found d ≤ 4 linear equations such that by adding them
to our original quadric Q(x) = 0 we end up with the partially diagonal
form (4.4). Some of the coefficients λi can be zero and we split the vector
x = (x1, . . . , xw) according to this condition. Denote by zi the variables with
vanishing coefficients in the quadratic equation. We obtain after renaming

λ1x
2
1 + . . .+ λux

2
u = P (y,h),

ν11z1 + . . .+ ν1vzv + µ11x1 + . . .+ µ1uxu = h1,

...
...

...
...

...

νd1z1 + . . .+ νdvzv + µd1x1 + . . .+ µduxu = hd,

(5.1)

where u + v = w. We recall that the integer variables hi can be restricted
to a bounded range [−CN,CN ] for some C ≥ 1.

There are now two cases to consider, which result in completely different
treatments of the system of equations. In the first case (the one we consider
in the next section) the columns (νij)1≤i≤d in the linear part of the system
are linearly independent. In particular, this implies that v ≤ d. If they
are not linearly independent, we deal with this system in Section 8 and use
methods of Gowers [8] on linear equations in dense sets.

Recall the definition of Vg(α, β) and Lg(α) from (2.3) and define a new
exponential sum corresponding to the right hand side of (5.1) by

Tg(α,β) =
∑
y≤N
|h|≤CN

g(y)e(αP (y,h) + β · h).
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In the case g(y) = 1As−w(y) = 1A(y1) · · · 1A(ys−w) we write TA(α,β) in-
stead. We can use the trivial estimate

|Tg(α,β)| ≤
∑
|h|≤CN

∣∣∣∑
y≤N

g(y)e(αP (y,h))
∣∣∣

to remove the linear term. Since the quadratic form P (y,h) has off-rank at
least r for any h, we get (as in the proof of the second part of Theorem 3.1)

|Tg(α,β)| � N s−w+d−rK(α)r,(5.2)

for K(α) as in (3.1) and any bounded g(y) = g1(y1) · · · gs−w(ys−w).
To simplify the estimation of (6.3) we introduce abbreviations for two

often occuring ‘actions’.

Rep: (Replace) Suppose that one is given a set of linearly independent
linear forms Ω and another linear form l. Choose one linear form
l′ from the set Ω and exchange it with l in such a way that {l} ∪
Ω\{l′} is still linearly independent. We use this action to replace
one exponential sum by another in such a way that the corresponding
linear forms obey the replacement property.

EaS: (Estimate and Simplify) If we estimate an exponential sum integral
by a sum of several such integrals, we need to deal only with the
maximal contribution. This happens, for example, when we apply
the inequality xp11 · · · xpnn ≤ xp1 + . . .+ xpn � xp1 with p = p1 + . . .+ pn
and assume without loss of generality that xp1 is the largest term. If
different terms require different treatments, we make an additional
case analysis.

6. Convexity and Correlation Estimates

Now that we set up the necessary notation and conventions, we can write
the number of solutions to (5.1) as the Fourier-integral∫

Td+1

TA(α,β)
v∏
i=1

LA(νi · β)
u∏
j=1

VA(λjα,µj · β) dαdβ.(6.1)

For A ⊂ [1, N ] and δ = N−1|A| we define the balanced function f by

f(n) = 1A(n)− δ.(6.2)

We replace each occurrence of 1A in the integral above by f + δ1[1,N ] and
expand (6.1) into 2s integrals of the form

E =

∫
Td+1

Tg(α,β)
v∏
i=1

Lfi(νi · β)
u∏
j=1

Vgj(λjα,µj · β) dαdβ,(6.3)

where fi, gj ∈ {f, δ1[1,N ]} and g is a product of s − w such functions. We
consider the 2s − 1 integrals that contain the function f as ‘error terms’
and give upper bounds on their size to deduce correlation estimates for the
exponential sums later.
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We start with the case, where f1 = f and show later how to modify the
argument to obtain the estimate in the other cases. By pulling out half of
Lf , we obtain from (6.3) the estimate

E � sup
β
|Lf (β)|1/2

∫
Td+1

|Tg||Lf1|1/2
v∏
i=2

|Lfi|
u∏
j=1

|Vgj | dαdβ,

where we left out the dependences on the variables to save space. By prop-
erty [AP] from Section 4, the linear forms νi ·β and µj ·β in the exponential
sums Lfi and Vgj contain two basis sets after removing ν1 ·β. We can group
these exponential sums into two products W1 and W2 corresponding to the
two bases. Since the linear forms νi ·β are linearly independent by assump-
tion, we can make sure that all Lfi for 2 ≤ i ≤ u are contained in W1. We
obtain (after renaming) an estimate of the form

E � sup
β
|Lf (β)|1/2

∫
Td+1

|Tg||Lf1 |1/2|W1||W2|
w−2d−1∏
j=1

|Vgj | dαdβ.(6.4)

Since the half-power of a linear exponential sum would cause problems later,
we find by [Rep] an exponential sum V inside W2 that can be replaced by
Lf1 . Then we apply [EaS] with the estimate |L|1/2|V | ≤ |V |1/2|L| + |V |3/2
to replace |L|1/2 by |V |1/2. In the case of the first summand, we have
substituted |V | by |L| inside W2. Assume without loss of generality that V
is Vgw−2d

. Our estimate is now

E � sup
β
|Lf (β)|1/2

∫
Td+1

|Tg||Vgw−2d
|1/2|W1||W2|

w−2d−1∏
j=1

|Vgj | dαdβ.

At this point we are in the position to apply a cascade of estimates. We
replace |Tg| by the right hand side of (5.2), use [EaS] to replace the product
of the Vgj (including |Vgw−2d

|1/2) by |Vg1|w−2d−1/2 and again [EaS] with the
estimate |W1W2| ≤ |W1|2 + |W2|2. We obtain a much simpler upper bound
of the form

E � N s−w−r+d sup
β
|Lf (β)|1/2

∫
Td+1

Kr|Vg1|w−2d−1/2|W1|2 dαdβ.

Before we proceed further, we reduce the power of |Vg1| in order to obtain a
more uniform estimate in δ later on. We can replace w−2d ≥ s−4r ≥ 5−r
by the minimal value 5− r for which the following argument works and pull
out any additional powers of |Vg1 |. With the trivial estimate |Vg1| ≤ 2δN
we obtain

E � δw−2d+r−5N s−d−5 sup
β
|Lf (β)|1/2

∫
Td+1

Kr|Vg1|9/2−r|W1|2 dαdβ.

Now we continue with the main argument. The estimate

Kr|Vg1|9/2−r ≤ K9/2 + |Vg1|9/2(6.5)
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results in two cases. If the first expression on the right hand side gives the
dominating contribution, then

E � δw−2d+r−5N s−d−5 sup
β
|Lf (β)|1/2

∫
Td+1

K9/2|W1|2 dαdβ.

Here we can use the fact that K only depends on α with Parseval’s identity
(or equivalently ‘interpretation of the integral as a diophantine equation’)∫

Td
|W1(α,β)|2 dβ = Nd,

to get the bound

E � δw−2d+r−5N s−5 sup
β
|Lf (β)|1/2

∫
T
K(α)9/2 dα.

We can apply Lemma 3.2 to get the final upper bound

E � δw−2d+r−5N s−5/2 sup
β
|Lf (β)|1/2.(6.6)

If the second term in (6.5) gives the dominating contribution, then

E � δw−2d+r−5N s−d−5 sup
β
|Lf (β)|1/2

∫
Td+1

|Vg1|9/2|W1|2 dαdβ,(6.7)

and things are slightly more complicated. First we find by [Rep] the linear
form in W1 that corresponds to µ1 · β. This linear form can either belong
to another function Vgj or µ1 · β must be in the span of the linear forms of
the linear exponential sums Lfi that appear in W1. We have to deal with
these subcases differently.

In the first subcase, we can use [EaS] with the estimate

|Vg1|9/2|Vgj |2 � |Vg1|13/2

and make the change of variables γi = νi · β and γj = µj · β to bound the
integral in (6.7) by a multiple of∫

Td+1

|Vg1(λ1α, γ1)|13/2
h∏
i=2

|Lfi(γi)|2
d∏

j=h+1

|Vgj(λjα, γj)|2 dαdγ,

for some h ≤ d dependent on the previous steps. Since the variables γj
appear now separately, we can use Parseval’s identity d−1 times to integrate
out γ2 to γd and obtain

E � δw−2d+r−5N s−6 sup
β
|Lf (β)|1/2

∫
T2

|Vg1(λ1α, γ1)|13/2 dαdγ1.

A change of variables (to remove λ1) and Theorem C.1 imply the final bound

E � δw−2d+r−5N s−5/2 sup
β
|Lf (β)|1/2.
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In the second subcase of the analysis of (6.7), we can bound the integral
in (6.7) (after a change of variables) by a multiple of∫

Td+1

|Vg1(λ1α,ν · γ)|9/2
h∏
i=1

|Lfi(γi)|2
d∏

j=h+1

|Vgj(λjα, γj)|2 dαdγ,

for some ν ∈ Qd with the property that the linear form ν · γ only contains
the variables γ1, . . . , γh. As before, we integrate out the functions |Vgj |2 by
Parseval’s identity and end up with

Nd−h
∫
Th+1

|Vg1(λ1α,ν · γ)|9/2
h∏
i=1

|Lfi(γi)|2 dαdγ1 · · · dγh.

Now we are again in a situation similar to the case with K(α). Observe
that the functions Lfi are independent of α. We can use Lemma C.4 and
Parseval’s identity for the integrals over γ1, . . . , γh to bound this from above
by

Nd−h sup
β

∫
T
|Vg1(λ1α, β)|9/2 dα

∫
Th

h∏
i=1

|Lfi(γi)|2 dγ1 · · · dγh

�Nd−hN5/2Nh = Nd+5/2.

Combined with (6.7), we obtain estimate (6.6) again.
This is the end of the estimates under the assumption that f1 = f . We

now address the other cases. Obviously, the same procedure works, when
fi = f for some other i ≤ v. If gj = f for some j ≤ u, the argument is even
simpler. We obtain instead of (6.4) the inequality

E � sup
α,β
|Vf (α, β)|1/2

∫
Td+1

|Tg||Vgw−2d
|1/2|W1||W2|

w−2d−1∏
j=1

|Vgj | dαdβ,

which can be treated in the same manner as before and gives the final bound

E � δw−2d+r−5N s−5/2 sup
α,β
|Vf (α, β)|1/2.

To describe the last remaining case write g(y) =
∏s−w

k=1 hk(yk) for the
function g appearing in Tg with hk = f for some 1 ≤ k ≤ s−w. Instead of
pulling out half of Tg, we take the 1/(2r)-th power. This gives us

E � sup
α,β
|Tg(α,β)|1/2r

∫
Td+1

|Tg|1−1/2r|W1||W2|
w−2d∏
j=1

|Vgj | dαdβ

instead of (6.4). The same estimates as before apply, where K(α)1/2 is
replaced by |Vg1|1/2. This does not matter since we use [EaS] with (6.5)
to separate the cases with K and Vg1 anyway. The final estimate has the
slightly different form

E � δw−2d+r−5N s−2−(s−w+d)/2r sup
α,β
|Tg(α,β)|1/2r.
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This concludes the last case of the error term estimates and we proceed to
deduce the corelation estimates.

One of the integrals appearing in the expansion of (6.1) is equal to

δs
∫
Td+1

T (α,β)
v∏
i=1

L(νi · β)
u∏
j=1

V (λjα,µj · β) dαdβ(6.8)

and gives the expected number of solutions to (5.1) with xi, zj ∈ [1, N ].
From the discussion in Section 2 and Lemma 2.3, we know that (6.8) is
bounded from below by � δsN s−2. On the other hand, (6.1) is of size
exactly δN since by assumption there are only trivial solutions to our system
(5.1). Therefore, at least one of the 2s − 1 ‘error terms’ E has to be of size
� δsN s−2 if N �Q δ−2. The three previously obtained upper bounds
transform with w ≥ s− 4r + 2d into one of the correlation estimates

sup
α,β
|Tg| � δ2r(3r+5)N s−w+d, sup

α,β
|Vf | � δ6r+10N or sup

α
|Lf | � δ6r+10N,

as long as N �Q δ−2 and r ≤ 4. In the next section, these lower bounds
are used to obtain structural information about the set A.

7. Density Increment Method

In equation (3.7) and Section 6 we have found the correlation estimates

sup
α
|Sfi(α)| � δs+80N s, sup

α,β
|Tg(α,β)| � δ136N s−w+d,

sup
α
|Lf (α)| � δ34N, sup

α,β
|Vf (α, β)| � δ34N,

that hold for suitable functions fi, g as long as N �Q δ−2. To reduce our
work we transform the first three estimates to the fourth (with δ136 instead
of δ34) in the following way. We have from (3.6) the representation

Sfi(α) =
∑
x≤N

(1A(xi)− δ)δi−1
∏
j>i

1A(xj)e(αQ(x))

=
∑
x′≤N

δi−1
∏
j>i

1A(xj)
∑
xi≤N

f(xi)e(αqx′(xi)),

where x′ is the vector of variables without xi and qx′(xi) = Q(x) is seen as a
quadratic polynomial in xi with linear and constant coefficients depending
on x′. Therefore, we deduce for some d ∈ Z and β = β(x′, α) the estimate

|Sfi(α)| ≤
∑
x′≤N

δi−1
∏
j>i

1A(xj)|Vf (dα, β)|.

Take the supremum over α and β of V outside the sum and conclude that

δs+80N s � sup
α
|Sfi(α)| ≤ sup

α,β
|Vf (α, β)|

∑
x′≤N

δi−1
∏
j>i

1A(xj)

≤δs−1N s−1 sup
α,β
|Vf (α, β)|,

which gives the desired implication.
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In a similar way we may reduce the second estimate to the fourth. The
function g in Tg is a product of functions f from (6.2) and δ1[1,N ]. We
expand all but one of the balanced functions f in g into 1A − δ, giving us
several exponential sums of the form

Tgi(α,β) =
∑

y≤N,|h|≤CN

f(yi)
∏
j 6=i

gj(yj)e(αP (y,h) + β · h)

with gj ∈ {δ1[1,N ], 1A}. At least one of these has to be big and this implies
a correlation estimate in exactly the same way as for Sfi if we estimate the
sums over h trivially. Finally, we observe the identity Lf (β) = Vf (0, β)
which reduces the third case to the fourth.

The fourth correlation can be used to obtain a density increment by the
following lemma.

Lemma 7.1. If |Vf (α, β)| ≥ ηN for some (α, β) ∈ T2 and η > 0, then there
is an arithmetic progression P ⊂ [1, N ] of length |P | � η2N1/16 with

|A ∩ P | ≥ (δ + η/4)|P |.

Proof. This is the Lemma B.1 in Appendix B of [15]. Similar statements
for finite fields can be found in [8], for example. �

We use the large Fourier estimate |Vf (α, β)| � δ136N from above with
Lemma 7.1 to find a progression P of length � δ272N1/16, such that A has
density ≥ δ + λδ136 on P , where λ > 0 is an absolute constant. Due to the
translation and dilation invariance of Q(x) = 0, we end up with the same
problem on a subprogression, but with a slightly higher density.

Since the density is bounded by one, this procedure cannot last more
than λ−1δ−136 steps before reaching a contradiction. This means that at
some stage we have a non-trivial solution or the size of our progression is
� δ−2. The first option is not available by assumption. Therefore, we have

δ150N (1/16)λ
−1δ−136

�Q δ
−2.

Rearranging for δ we can deduce that δ � (log logN)−c with c = (137)−1,
for example.

8. A Linear Subsystem

In this section we consider the last two cases of Theorem 2.2. First let
us look at the case from Section 6, when the columns of the linear part in
(5.1) turn out to be linearly dependent. This allows us to extract a linear
subsystem as follows.

Since the quadric is translation invariant we can set yk = zj = xi =
z0 ∈ A for any z0, and get a trivial solution of (5.1) with uniquely defined
hi(z0) = −νi0z0 for some νi0 ∈ Z. Equipped with this information, we can
set yk = xi = z0 ∈ A and hi = −ν0z0 for all k and i in (5.1) and obtain the



TRANSLATION INVARIANT QUADRATIC FORMS 19

translation invariant system

ν11z1 + . . .+ ν1vzv + ν10z0 = 0,

...
...

...

νd1z1 + . . .+ νdvzv + νd0z0 = 0,

(8.1)

with coefficients νi0 ∈ Z. By assumption, the rank of the first v columns
is at most v − 1. By translation invariance, the last column is a linear
combination of the first v columns and this implies that the rank of the
whole coefficient matrix is still at most v − 1. This gives a linear system in
v + 1 variables with at most v − 1 independent equations. A very similar
system appears in Section 2 in the situation, where the number of non-zero
coefficients in (2.1) is at most four. Both systems can be treated by the
method of Gowers [8], as we show now.

First we remove equations from (8.1) until the remaining rows become
linearly independent. To simplify notation, we can assume that we are left
with w equations and w + 2 variables. If more variables are left over, we
can ‘fuse’ them by setting them equal to z0.

We can also assume that the columns of E are in general position. To
see this we take Z-linear combinations of rows and rename variables to
transform the equation Ez = 0 into the form(

D a b
)
· z = 0,(8.2)

where D ∈ Zw×w is a diagonal matrix of full rank with non-zero diagonal
entries and a,b ∈ Zw are integer vectors. The property that the columns
of the matrix in (8.2) are in general position translates into the arithmetic
conditions that ai 6= 0, bi 6= 0 for all i and aibj − ajbi 6= 0 for i 6= j.

If this is not the case, we can combine two rows to deduce an equation
of the form mzi = mzj for some 1 ≤ i < j ≤ w + 2 and m 6= 0. (The form
of this equation is forced by translation invariance.) It is then possible to
reduce the system by one equation and one variable, leaving us with the
same situation with parameter w − 1 instead of w.

We should briefly discuss the case w = 1. In this case we have one
equation in three variables of the form

d1x1 + d2x2 + d3x3 = 0,

with d1+d2+d3 = 0. If di 6= 0 for all 1 ≤ i ≤ 3, then we are in the situation
of Roth’s paper [18] and we obtain a bound of the form O((log logN)−1)
for the density of A. If we have di = 0 for one of the coefficients, then we
directly get a non-trivial solution in A as long as |A| ≥ 2.

Now consider the difference∑
z,Ez=0

1A(z0) · · · 1A(zw+1)−
∑

z,Ez=0

δ1[1,N ](z0) · · · δ1[1,N ](zw+1).

Since we assume that our system has only trivial solutions, this difference
is either of size around δw+2N2 or we have N � δ−w−1. In the second case,
we are done. Otherwise, we can write 1A = f + δ1[1,N ] for the balanced
function f from (6.2) and expand the first sum into 2w+2 terms, one of
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which is cancelled by the second term. Then we bound the remaining sums
of the form ∑

z,Ez=0

f0(z0) · · · fw+1(zw+1).(8.3)

with functions fi ∈ {f, δ1[1,N ]} and at least one of these fi equal to f .
To simplify the exposition and be able to cite a result from [8], we convert

this sum into one with variables zi ∈ Z/MZ for some prime M dependent
on N and E. We choose the prime M in an interval [CEN, 2CEN ], which is
possible by Bertrand’s postulate. More precisely, we take CE in such a way
that the equation Ez = 0 in Z/MZ with zi ∈ [1, N ] implies that Ez = 0
in Z. This is always possible, if CE is big enough to avoid ‘wrap-around
issues’. We set the functions fi(zi) = 0 for zi /∈ [1, N ].

The ‘error terms’ in (8.3) can be bounded by more symmetric expres-
sions, the so called uniformity norms. This is done in Appendix B, where we
deduce Lemma B.1. We get the estimate (see Appendix B for a definition
of ∆)

M−2
∑

z,Ez=0

f0(z0) · · · fw+1(zw+1)

≤
(
M−w−2

∑
h1,...,hw

∣∣∣∑
zw+1

∆(fw+1; h)(zw+1)
∣∣∣2)2−w−1

.
(8.4)

For this to be useful, we have to assume that fw+1 = f . If this was not the
case, we can rename variables to obtain the desired outcome.

According to [8] we define a function f : Z/MZ→ C to be α-uniform of
degree w if ∑

h1,...,hw

∣∣∣∑
z

∆(f ; h)(z)
∣∣∣2 ≤ αMw+2.

A set A is α-uniform if its balanced function f given by (6.2) is α-uniform.
By assumption, our error term is � δw+2N2 � δw+2M2, so in combination
with the estimate (8.4), we derive that f is not µ(δw+2)2

w+1
-uniform for

some small µ > 0. Combined with the following theorem of Gowers this
allows us to deduce a density increment for A on a subprogression, similar
to the one in Lemma 7.1.

Theorem 8.1. Let α ≤ 1/2 and let A ⊂ Z/MZ be a set which fails to be
α-unform of degree k. There exists a partition of Z/MZ into arithmetic

progressions P1, . . . , PK of average size Mα22
k+10

such that
K∑
j=1

∣∣∣∑
s∈Pj

f(s)
∣∣∣ ≥ α22

k+10

M.

Proof. This is Theorem 18.5 from [8]. �

We note that the term arithmetic progression in the theorem refers to
‘proper’ arithmetic progressions, which keep their structure if projected
down to [1, N ]. For details the reader is referred to [8].
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To obtain the density increment we observe that

K∑
j=1

∑
s∈Pj

f(s) =
∑
s≤N

f(s) = 0

by the definition of f given in (6.2). Therefore, by Theorem 8.1, we have∑
s∈Pj

f(s) ≥ 1

2
α22

k+10

|Pj|

for some j ≤ K, which can be translated into a density increment of size

1

2

(
µ(δw+2)2

w+1
)22w+10

on Pj. If we perform the same iteration as in Section 7, we obtain the same

result but with c = 2−2
15

. This is due to the fact that we need the argument
only for w ≤ 4, which makes c independent of the number of variables s.

Appendix A. A Version of Vinogradov’s Lemma

Here we prove Lemma A.1, a version of Vinogradov’s lemma, that we
need for the estimation of bilinear exponential sums. While there are many
versions in the literature, none of those seems to be good enough for our
purpose. Since we need to reprove it with explicit dependance on β, we
take the opportunity to state it with explicit constants as well, to provide
a reference for possible numerical applications.

Lemma A.1. Let α = a/q + β with |β| ≤ 1
qN

and (a; q) = 1, then we have

∑
|h|≤N

min{N, ‖αh‖−1} ≤ 6N + 6 min

{
N2

q
,

1

|β|q
(
| log(|β|N2)|+ 2

)}
+ (4N + 2q) · (1 + log q).

Proof. We insert the formula α = a/q + β and rearrange the expression
according to the residue class of h mod q, giving us

∑
|h|≤N

min{N, ‖ah/q + βh‖−1} =

q−1∑
c=0

∑
|h|≤N

h≡c mod q

min{N, ‖ac/q + βh‖−1}.

Since |β| ≤ 1
qN

and h ≤ N , the term βh is bounded by 1/q and since

(a; q) = 1, there are at most three values of c such that ‖ac/q+βh‖ < 1/q is
possible. For the other values of c, we can bound the expression ‖ac/q+βh‖
from below by d/q for some 1 ≤ d ≤ q/2 independent of |h| ≤ N . Take
the maximal d for which the inequality holds and arrange the values of c
according to these d-values. There are at most two values of c for each d
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and we end up with the bound∑
|h|≤N

min{N, ‖αh‖−1} ≤ 3 sup
0≤c≤q−1

sup
x0∈[0,1]

∑
|h|≤N

h≡c mod q

min{N, ‖x0 + βh‖−1}

+ 2 · 2N + q

q

∑
1≤d≤q/2

‖d/q‖−1.

We use the estimate
∑

1≤d≤q/2
d−1 ≤ 1 + log q and get for the second term

2 · 2N + q

q

∑
1≤d≤q/2

‖d/q‖−1 ≤ 2 · (2N + q) · (1 + log q),

which accounts for the second line in the estimate of Lemma A.1. Write
h = c+ lq such that the first expression changes into

3 sup
0≤c≤q−1

sup
x0∈[0,1]

∑
|l+c/q|≤N/q

min{N, ‖x0 + βql‖−1}.

Since the function min{N, ‖γ‖−1} is monotone for 0 ≤ γ ≤ 1/2 and sym-
metric around the origin, we can choose x0 = c = 0 by taking care of a
possible boundary term and obtain the upper bound

3N + 3
∑
|l|≤N/q

min{N, ‖βql‖−1}.(A.1)

There is a small problem with this argument for q = 1 due to ’wrap-around
issues’ in R/Z, but the bound in (A.1) is trivial in this case.

We assume without loss of generality that β > 0 and split the summation
into −1/(βqN) < l < 1/(βqN) and the positive and negative part of the
sum over 1/(βqN) ≤ |l| ≤ N/q. The first sum gives a contribution of at
most N · (2/(βqN) + 1) and the the two other sums give

2

βq

∑
1/(βqN)≤l≤N/q

l−1 ≤ 2

βq
(| log(N/q)− log(1/(βqN))|+ 1)

=
2

βq

(
| log(βN2)|+ 1

)
.

There is also the trivial bound N(2N/q + 1) for the sum in (A.1), which is
superior for β ≤ 1/N2. We put everything together and replace β by |β| to
obtain the result. �

Appendix B. Uniformity Estimates

Here we want to give a proof for the uniformity estimate (8.4). This is a
slightly different version of a result of Gowers [8] and can be deduced from
the very general estimates in Appendix C of [12]. Since our result is a very
special case with a simpler proof, we give it here for completeness.

Define ∆(f ;h1, . . . , hd) inductively by ∆(f ;h)(x) = f(x)f(x− h) and

∆(f ;h1, . . . , hd+1) = ∆(∆(f ;h1, . . . , hd);hd+1).
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Consider

A(M,E, f) :=M−2
∑

x,Ex=0

f1(x1) · · · fw+2(xw+2),(B.1)

where the variables are summed over Z/MZ for some prime M .

Lemma B.1. For a matrix E ∈ Zw×(w+2) with columns in general position
over Z/MZ and bounded functions |fi| ≤ 1, we have the bound

|A(M,E, f)| ≤
(
M−w−2

∑
h1,...,hw

∣∣∣∑
x

∆(fw+2; h)(x)
∣∣∣2)1/2w+1

.

Remark B.2. There is nothing special about fw+2 here except for simplicity
of notation.

To simplify the exposition of the proof, we don’t write down all the
normalisation constants M−t, where t is the number of free variables in the
summation. We write ≤M instead of ≤ to say that the estimate holds up
to a power of M that has the right order of magnitude.

Proof. Since |f1| ≤ 1 we can estimate A(M,E, f) by

A(M,E, f) ≤M
∑
x1

∣∣∣ ∗∑
Ex=0

f2(x2) · · · fw+2(xw+2)
∣∣∣

≤M
(∑

x1

∣∣∣ ∗∑
Ex=0

f2(x2) · · · fw+2(xw+2)
∣∣∣2)1/2,

where the star ∗ indicates that the inner sums run only over x2, . . . , xs.
With y1 = x1 we can write the summation inside the square root as∑

x1

∗∑
Ex=0

∗∑
Ey=0

f2(x2) · · · fw+2(xw+2)f2(y2) · · · fw+2(yw+2).

Define h1 := xw+2 − yw+2 and observe that from Ex = 0 and Ey = 0 we
get E(x− y) = 0. By the definition of h1 we obtain that

E · (0, x2 − y2, . . . , xw+1 − yw+1, h1)
T = 0.

This equation uniquely determines the differences xi − yi once h1 is given
and, therefore, yi in terms of xi and h1. Denote this unique solution by
yxi,h1 and set Fi(h1;xi) = fi(xi)fi(yxi,h1). Then we can write the sum in the
form ∑

h1

∑
x,Ex=0

F2(h1;x2) · · ·Fw+1(h1;xw+1)∆(fw+2;h1)(xw+2).

Since this is just an average of another version of the original sum (B.1)
with f1 removed, we can use the estimate∑

h1

(∑
...
)
≤M

(∑
h1

∣∣∣∑ ...
∣∣∣2)1/2
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to apply the above procedure inductively to the inner sum. After w steps
we have removed all functions but ∆(fw+2;h1, . . . , hw) and some function
Fh(xw+1). We are left with

A(M,E, f) ≤M
( ∑
h1,...,hw

∑
x,Ex=0

Fh(xw+1)∆(fw+2; h)(xw+2)
)1/2w

.

Now we evaluate the sum over the variables x1, . . . , xw, since their values are
given once we know the values of xw+1 and xw+2. Having done this, we may
rearrange the summation a last time and proceed by another application of
the Cauchy-Schwarz-inequality and |Fh(xw+1)| ≤ 1 to obtain

A(M,E, f) ≤M

( ∑
h1,...,hw

(∑
xw+1

1
)∣∣∣ ∑

xw+2

∆(fw+2; h)(xw+2)
∣∣∣)1/2w

≤M
( ∑
h1,...,hw

∣∣∣ ∑
xw+2

∆(fw+2; h)(xw+2)
∣∣∣2)1/2w+1

,

which is the estimate in Lemma B.1 up to normalisation. �

Appendix C. Lp-Estimates for Quadratic Exponential Sums

In our recent work [15], we reproved a result of Bourgain [3], namely the
following estimate for the two-dimensional quadratic exponential sum.

Theorem C.1. Let Vg(α, β) be defined as in (2.3) for a function g with
|g(n)| ≤ 1. Then for p > 6, we have∫

T2

|Vg(α, β)|p dαdβ �p N
p−3.

Proof. This is Theorem 2.1 from [15]. �

Note that it is easy to get this result with Np−3 replaced by Np−3 logN .
In this appendix we use the same technique to prove a Lp-estimate for the
corresponding one-dimensional exponential sum

Ug(α) =
∑
n≤N

g(n)e(αn2),

where g : N→ C is any function with |g(n)| ≤ 1.

Theorem C.2. For p > 4, we have∫
T
|Ug(α)|p dα�p N

p−2.

The proof is a simplified version of the proof in [15] and we use a general
result (Theorem C.3 below) on Lp-estimates from our previous work. First
we need some notation. Consider the square

Ug(α)2 =
∑

n1,n2≤N

g(n1)g(n2)e(α(n2
1 + n2

2)).
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With ω(m) = #{n1, n2 ≤ N : m = n2
1 + n2

2} we can write

f(m)ω(m) =
∑

n1,n2≤N
n2
1+n

2
2=m

g(n1)g(n2)

for some function |f | ≤ 1. This leads to the definition of

Wf (α) = Ug(α)2 =
∑

m≤2N2

f(m)ω(m)e(αm).

For f ≡ 1 we get W (α). For an index set J decompose

W (α) =
∑
j∈J

Wj(α) and ω(m) =
∑
j∈J

ωj(m),

where Wj is the exponential sum for ωj. Define the Lp-norms as usual by

‖ω‖p :=
( ∑
m≤2N2

|ω(m)|p
)1/p

and ‖W‖p :=
(∫

T
|W (α)|p dα

)1/p
.

Now we can state the auxiliary result.

Theorem C.3. For p > 2, N ∈ N and any f : N→ C we have

‖Wf‖p ≤
( ∑
m≤2N2

|f(m)|2ω(m)
)1/2(∑

j∈J

‖Wj‖(p−2)/pp ‖ωj‖2/p2p/(p−2)

)1/2
.

Proof. This is a special case of Theorem 4.1 from [15]. �

The first factor is just a weighted L2-norm of f and is easily estimated
in our context. The second factor needs much more attention and we will
perform a variant of the major-minor-arc decomposition from the circle
method. For small values of j we have the big major-arc contribitions in
‖Wj‖p but the arithmetic counterparts ωj are very regular ‘almost periodic
functions’. For larger values of j, the random fluctuations in ωj contribute
more and more to the sum, but are balanced by the savings on the side
of the exponential sums Wj. The proposition below gives a quantitative
version of these qualitative description.

First we need some notation. Define the local versions of U(α) to be

U(q, a) =

q∑
b=1

e(ab2/q) and v(α) =

∫ N

1

e(αt2) dt

and set the major arcs M to be the union of

M(q, a) = {β ∈ T : ‖β − a/q‖ ≤ Q/N2}.(C.1)

for 1 ≤ a ≤ q, (a; q) = 1 and q ≤ 4Q. Note that they are disjoint for
4Q ≤ N2/3 and we set Q to be a small power of N with 16Q6 ≤ N later.
Define for Y ≤ 2Q a dyadic part of the usual major arcs approximation for
quadratic exponential sums (see [23, Theorem 7.2])

UY (α) :=
∑

Y≤q<2Y

q−2
∑

(a;q)=1

U(q, a)2v(α− a/q)2
∣∣∣
M(q,a)

.(C.2)
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We take the Fourier transform and obtain the arithmetic functions

ωY (m) =

∫
T
UY (α)e(−αm) dα

=
∑

Y≤q<2Y

q−2
∑

(a;q)=1

U(q, a)2e(−am/q)
∫
|β|≤Q/N2

v(β)2e(−βm) dβ,

which we restrict to 1 ≤ m ≤ 2N2. Set ωY (m) = 0 for other values of m.
Write W (α) for U2(α) and define the corresponding exponential sums for
ωY (m) as

WY (α) =
∑

m≤2N2

ωY (m)e(αm).

By inserting the definition of ωY (m) we see that WY (α) and UY (α) are
related by the formula

WY (α) =

∫
T
UY (β)L2N2(α− β) dβ,(C.3)

where LM(α) =
∑

n≤M e(αn) is the linear exponential sum.
Before we state the main proposition of this section, we set J to be the

set J = {1, 2, 4, . . . , 2D−1, 2D} with D ∈ N between log2Q and 1 + log2Q.
Decompose the function W and U2 into

U2(α) =
∑
Y ∈J

UY (α) + U′(α) and W (α) =
∑
Y ∈J

WY (α) +W ′(α).

One can think of U′ as the minor-arc contribution which also contains the
approximation error on the major arcs. Define ω′ as the arithmetic function
that belongs to W ′.

Proposition. For Y ≤ 2Q we have the estimates∫
T
|WY (α)|2 dα� N2,

∫
T
|W ′(α)|2 dα� N2+ε,

sup
α
|WY (α)| � N2Y −1, sup

α
|W ′(α)| � N2+εQ−1.

For each k ∈ N with Q8k ≤ N we have∑
m≤2N2

|ωY (m)|2k �ε,k Y
εN2 and

∑
m≤2N2

|ω′(m)|2k �ε,k N
2+ε.

Proof. We go through the estimates one by one. For the first one, we observe
that by (C.3) the function WY is a projection of UY and, therefore, by
Bessel’s inequality, we have the upper bound∫

T
|WY (α)|2 dα ≤

∫
T
|UY (β)|2 dβ,

which can also be established directly. Insert the definition of UY from
(C.2) and expand. We obtain due to the disjointness of the sets M(q, a) the
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evaluation∫
T
|UY (β)|2 dβ =

∑
Y≤q<2Y

q−4
∑

(a;q)=1

|U(q, a)|4
∫
M(q,a)

|v(α− a/q)|4 dα.

By the well known estimates |U(q, a)| � q1/2 (see for example Lemma A.5
in [15]) and |v(β)| � N(1 + |β|N2)−1/2 (see [23, Theorem 7.3]), we obtain
the claim by a straightforward calculation.
The L2-bound for W ′ follows from the previous bound since by Parseval’s
identity and ω(m)�ε m

ε we get∫
T
|W (α)|2 dα =

∑
m≤2N2

ω(m)2 � N2+ε.

The L∞-estimate for WY starts with (C.2) and (C.3) and gives us

|WY (α)| ≤
∑

Y≤q<2Y

q−2
∑

(a;q)=1

|U(q, a)|2
∫
M(q,a)

|v(β − a/q)|2|L2N2(α− β)| dβ

≤ Y −1
∑

Y≤q<2Y

∑
(a;q)=1

∫
M(q,a)

|v(β − a/q)|2|L2N2(α− β)| dβ

using again the estimate |U(q, a)| � q1/2. For a given pair of q and a we
can estimate the inner integral by Cauchy’s inequality. The two resulting
integrals can be dealt with the estimate |v(β)| � N(1 + |β|N2)−1/2 and
Parseval’s identity to obtain the bound∫

M(q,a)

|v(β − a/q)|2|L2N2(α− β)| dβ

≤
(∫

M(q,a)

|v(β − a/q)|4 dβ
)1/2(∫

T
|L2N2(α− β)|2 dβ

)1/2
� N2.

This estimate is very wasteful if a/q is ‘far’ away from α and we use it only
when ‖a/q − α‖ ≤ 2Q4/N2. But there is only one such pair a and q since
‖ai/qi−α‖ ≤ 2Q4/N2 for i ∈ {1, 2} implies that 1/q1q2 ≤ ‖a1/q1−a2/q2‖ ≤
4Q4/N2, which isn’t possible due to the restriction 16Q6 ≤ N .

For all the other values of a and q we can do better by using the bounds
|L(α)| ≤ ‖α‖−1 and |v(β)| ≤ N . Since ‖a/q−α‖ > 2Q4/N2 and ‖a/q−β‖ ≤
Q/N2 we get |L2N2(α− β)| ≤ N2/Q4. This implies∫

M(q,a)

|v(β − a/q)|2|L2N2(α− β)| dβ � µ(M(q, a))N3/Q4,

where µ is the Lebesgue measure. Summing over a and q and using the
bound µ(M(q, a)) ≤ 2Q/N2, we obtain the L∞-estimate for WY .

For the last part of the L∞-estimates write

U∗(α) =
∑
Y ∈J

UY (α)
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as an abbreviation. From |L2N2(α)| ≤ min{2N2, ‖α‖−1} we obtain∫
T
|L2N2(α)| dα� logN.

We use this observation together with (C.3) and the ‘projection identity’

W (α) =

∫
T
U2(β)L2N2(α− β) dβ

to reduce the L∞-bound for W ′ to

|W ′(α)| ≤
∫
T
|U2(β)− U∗(β)||L2N2(α− β)| dβ ≤ logN sup

β∈T
|U2(β)− U∗(β)|.

Since U∗ is the major arc approximation for U2 and zero outside of M,
we can use Theorem 7.2 from [23] to estimate the approximation error ∆ =
U(α)−q−1U(q, a)v(α−a/q) on the major arcs by |∆| � q(1+|β|N2)� Q2.
This is acceptable for our choice of Q. We estimate the size of U by Weyl’s
inequality (see [23, Lemma 2.4]) from above by

|U(α)| � N1+ε(1/q + 1/N + q/N2)1/2,

if α = a/q+β with |β| ≤ 1/q2. For α /∈M we have q ≥ Q and the estimate
|U(α)| � N1+εQ−1/2 as long as Q ≤ N , which gives the desired estimate
on the minor arcs.

The result for ωY is obtained from the decomposition

ωY (m) =
∑

Y≤q<2Y

q−2
∑

(a;q)=1

U(q, a)2e(−am/q)
∫
|β|≤Q/N2

v(β)2e(−βm) dβ.

Since this factors into an analytic and an arithmetic part, we can use the
Cauchy-Schwarz-inequality to estimate the 2k-th moment over each part
separately but with 4k instead of 2k. The analytic part can be dealt with
by the Hausdorff-Young inequality for p = (1− 1/(4k))−1 and contributes∑

m≤2N2

∣∣∣ ∫
|β|≤Q/N2

v(β)2e(−βm) dβ
∣∣∣4k �k

(∫
T
|v(β)|2p dβ

)4k/p
� N2.

On the other hand, the arithmetic moment can be bounded by [15, Lemma
5.3] and we obtain∑

m≤2N2

∣∣∣ ∑
Y≤q<2Y

q−2
∑

(a;q)=1

U(q, a)2e(−am/q)
∣∣∣4k �k,ε N

2Y ε

as lond as Y 8k ≤ 2N2, which is satisfied, if Q is a sufficiently small power
of N .

The result for ω′ = ω−
∑

Y ∈J ωY follows from by Hölder’s inequality and
the fact that the number of solutions to m = x2 + y2 is bounded by mε. �

Proof of Theorem C.2. We use the proposition above with Theorem C.3.
We set Wf = U2

g , N1 = 2N2, J0 = {0} ∪ J , where W0 = W ′, ω0 = ω′ and
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r = p/2 > 2. The first factor in

‖Wf‖r ≤
( ∑
m≤2N2

|f(m)|2ω(m)
)1/2( ∑

Y ∈J0

‖WY ‖(r−2)/rr ‖ωY ‖2/r2r/(r−2)

)1/2
is O(N) since |f(m)| ≤ 1 and ω(m) = #{n1, n2 ≤ N : m = n2

1 + n2
2}. The

bound for the Lr-norm of WY for Y 6= 0 follows from∫ 1

0

|WY (α)|r dα ≤ sup
α
|WY (α)|r−2

∫ 1

0

|WY (α)|2 dα� (N2Y −1)r−2N2

by the first part of the proposition. For Y = 0 we obtain in the same way∫ 1

0

|W0(α)|r dα� (N2+εQ−1)r−2N2+ε.

The moment estimates for ωY give∑
m≤2N2

|ωY |2r/(r−2) � N2Y ε and
∑

m≤2N2

|ω0|2r/(r−2) � N2+ε.

If we parametrize J by Y = 2i, we get for D ≈ log2N the upper bound∑
Y ∈J0

‖WY ‖(r−2)/rr ‖ωY ‖2/r2r/(r−2) ≤
∑
i≤D

(
(N22−i)r−2N2 · 2εiN2

)(r−2)/r2
+

+
(

(N2+εQ−1)r−2N2+ε ·N2+ε
)(r−2)/r2

.

This is O(N2(r−2)/r) if r > 2 and Q is a small power of N dependent on r.
Combine the square-root of this with the first factor to get

‖Wf‖r � N (2r−2)/r,

which gives the result when we take r-th powers and substitute r = p/2. �

We give a corollary of Theorem C.2 for the two-dimensional version.

Lemma C.4. Let |g| ≤ 1, then for p > 4 we have

sup
β

∫
T
|Vg(α, β)|p dα� Np−2.

Proof. Write

Vg(α, β) =
∑
n≤N

g(n)e(αn2 + βn) =
∑
n≤N

g(n)e(βn)e(αn2) = Uh(α)

for h(n) = g(n)e(βn). The estimate now follows from Theorem C.2. �
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